The protein expression and purification core will provide purified recombinant serpins and other needed proteins from both bacterial and mammalian cell sources to all four research projects. Using bacterial expression plasmids or stably-transfected BHK cell lines, both constructed by the Molecular Biology and Cell Culture core or already available in the laboratories of the investigators, the core will express the required protein by growth of the appropriate cell type, harvest either bacteria or BHK cell growth medium, and isolate the recombinant protein to the high degree of purity required by each project. The core will use established purification methods developed by the investigators for proteins already expressed, but will further optimize protocols to maximize yield and streamline purification. Development for protocols for isolation of new proteins will be the responsibility of the technical director of the core in consultation with the appropriate P.I. The core will provide quality control of the purified protein, by electrophoretic means, functional assay, and where appropriate protein sequencing. The Administrative Director will schedule protein purifications to meet the priorities of the investigators, but with the aim of providing equitable service to all projects. The core may expand beyond the present personnel to meet additional protein needs of the four investigators for other funded projects. However, such additional services will be charged to the other grants.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL064013-01
Application #
6313248
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2000-02-22
Project End
2004-11-30
Budget Start
Budget End
Support Year
1
Fiscal Year
2000
Total Cost
$214,708
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
121911077
City
Chicago
State
IL
Country
United States
Zip Code
60612
Duhan, U; Patston, P (2010) Explanation for the high heat stability of thyroxine binding globulin-Chicago. Endocr Regul 44:43-7
Swanson, Richard; Raghavendra, Manikanahally P; Zhang, Weiqing et al. (2007) Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins. Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme J Biol Chem 282:2305-13
Dementiev, Alexey; Dobo, Jozsef; Gettins, Peter G W (2006) Active site distortion is sufficient for proteinase inhibition by serpins: structure of the covalent complex of alpha1-proteinase inhibitor with porcine pancreatic elastase. J Biol Chem 281:3452-7
Tesch, Lisa D; Raghavendra, Manikanahally P; Bedsted-Faarvang, Tina et al. (2005) Specificity and reactive loop length requirements for crmA inhibition of serine proteases. Protein Sci 14:533-42
Simonovic, Miljan; Denault, Jean-Bernard; Salvesen, Guy S et al. (2005) Lack of involvement of strand s1'A of the viral serpin CrmA in anti-apoptotic or caspase-inhibitory functions. Arch Biochem Biophys 440:1-9
Gettins, Peter G W; Backovic, Marija; Peterson, Francis C (2004) Use of NMR to study serpin function. Methods 32:120-9
Al-Ayyoubi, Maher; Gettins, Peter G W; Volz, Karl (2004) Crystal structure of human maspin, a serpin with antitumor properties: reactive center loop of maspin is exposed but constrained. J Biol Chem 279:55540-4
Dementiev, Alexey; Petitou, Maurice; Herbert, Jean-Marc et al. (2004) The ternary complex of antithrombin-anhydrothrombin-heparin reveals the basis of inhibitor specificity. Nat Struct Mol Biol 11:863-7
Patston, Philip A; Church, Frank C; Olson, Steven T (2004) Serpin-ligand interactions. Methods 32:93-109
O'Keeffe, Denis; Olson, Steven T; Gasiunas, Nijole et al. (2004) The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. J Biol Chem 279:50267-73

Showing the most recent 10 out of 26 publications