The biological basis for well-known relationships among conotruncal and neural tube defects is now generally assumed to be found in the common origin of their primordial cells. However, there is no consensus about the mechanism that leads to these defects. A high level of protection of protection is offered for conotruncal, other neural crest, and neural tube defects by folic acid supplementation, implying that an unnamed process of extraordinary importance is sensitively dependent upon an adequate supply of folic acid. For the present proposal, we will test the hypothesis that homocysteine is a teratogen for the conotruncus and other derivatives of the neuroepithelium; and that folic acid supplementation provides protection for embryos by reducing the concentration of homocysteine can induce abnormal development of the conotruncus and other neural crest/neural tube derivatives by acting as an NMDA receptor (NMDA) antagonist. By this mechanism, homocysteine may interact with other NMDA antagonists to exacerbate the teratogenic effect; conversely, it may be predicted that activation of the NMDA would rescue embryos exposed to homocysteine and related compounds. The following specific aims will test this hypothesis.
Aim 1, to determine how exogenous NMDA antagonists may interact with homocysteine to exacerbate the disruption of normal development.
Aim 2, to measure the degree to which activation of the NMDA may rescue embryos that are treated with homocysteine and related compounds.
Aim 3, to analyze changes in gene expression in embryos treated with homocysteine and other NMDA antagonists. SIGNIFICANCE. This proposal offers the first unifying hypothesis regarding a mechanism for a large set of risk factors for abnormal development whose common effect is to inhibit the function of the NMDA. These may include therapeutic drugs, recreation drugs, environmental pollutants, and sequelae of malnutrition. A common mechanism of action would permit these factors to interact in previously unsuspected ways, potentially to exacerbate their respective effects. Effective and comprehensive prevention strategies may be achieved through understanding of such interactive mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
3P01HL066398-01S1
Application #
6608277
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
2002-06-01
Project End
2002-08-30
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Nebraska Medical Center
Department
Type
DUNS #
City
Omaha
State
NE
Country
United States
Zip Code
68198
Lie, Octavian V; Bennett, Gregory D; Rosenquist, Thomas H (2010) The N-methyl-d-aspartate receptor in heart development: a gene knockdown model using siRNA. Reprod Toxicol 29:32-41
Rosenquist, Thomas H; Chaudoin, Tammy; Finnell, Richard H et al. (2010) High-affinity folate receptor in cardiac neural crest migration: a gene knockdown model using siRNA. Dev Dyn 239:1136-44
Cabrera, Robert M; Shaw, Gary M; Ballard, Johnathan L et al. (2008) Autoantibodies to folate receptor during pregnancy and neural tube defect risk. J Reprod Immunol 79:85-92
Gelineau-van Waes, Janee; Maddox, Joyce R; Smith, Lynette M et al. (2008) Microarray analysis of E9.5 reduced folate carrier (RFC1;Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genomics 9:156
Gelineau-van Waes, Janee; Heller, Steven; Bauer, Linda K et al. (2008) Embryonic development in the reduced folate carrier knockout mouse is modulated by maternal folate supplementation. Birth Defects Res A Clin Mol Teratol 82:494-507
Finnell, Richard H; Shaw, Gary M; Lammer, Edward J et al. (2008) Gene-nutrient interactions: importance of folic acid and vitamin B12 during early embryogenesis. Food Nutr Bull 29:S86-98;discussion S99-100
Chen, Brian H; Carmichael, Suzan L; Shaw, Gary M et al. (2007) Association between 49 infant gene polymorphisms and preterm delivery. Am J Med Genet A 143A:1990-6
Taparia, Shveta; Gelineau-van Waes, Janee; Rosenquist, Thomas H et al. (2007) Importance of folate-homocysteine homeostasis during early embryonic development. Clin Chem Lab Med 45:1717-27
Zhu, Huiping; Cabrera, Robert M; Wlodarczyk, Bogdan J et al. (2007) Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity. BMC Dev Biol 7:128
Rosenquist, T H; Bennett, G D; Brauer, P R et al. (2007) Microarray analysis of homocysteine-responsive genes in cardiac neural crest cells in vitro. Dev Dyn 236:1044-54

Showing the most recent 10 out of 30 publications