The Genomics/Proteomics Core is designed to support all the Projects in the Program Project for the? Specific Aims that address the regulation of gene and protein expression. The Genomics/ Proteomics Core? is also designed to interact with all the other Cores, especially Core-D (Biostatistics/Bioinformatics).? Genomics and Proteomics are combined to offer a link, both logical and biological, between gene? expression, transcript stability, protein translation and post-translational modifications. The Core will? combine focused techniques (to investigate one specific product of interest) and large-scale profiling at both? the gene and protein levels. The Genomics/ Proteomics Core will provide technical assistance to the? different Projects for the processing of samples, whereas the preparation of the samples themselves will be? the responsibility of the investigators from the different Projects and from Core B (Physiology). Once the? samples are processed, the raw data will be transmitted to these investigators and to Core D (Biostatistics)? who will be in charge of the data analysis and extraction of results. Additional techniques related to gene? and protein expression that would require fixed samples will be done in collaboration with Core E? (Pathology).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL069020-08
Application #
7673356
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
8
Fiscal Year
2008
Total Cost
$284,297
Indirect Cost
Name
University of Medicine & Dentistry of NJ
Department
Type
DUNS #
623946217
City
Newark
State
NJ
Country
United States
Zip Code
07107
Vatner, Dorothy E; Zhang, Jie; Oydanich, Marko et al. (2018) Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell :e12751
Guers, John J; Zhang, Jie; Campbell, Sara C et al. (2017) Disruption of adenylyl cyclase type 5 mimics exercise training. Basic Res Cardiol 112:59
Zhang, Jie; Zhao, Xin; Vatner, Dorothy E et al. (2016) Extracellular Matrix Disarray as a Mechanism for Greater Abdominal Versus Thoracic Aortic Stiffness With Aging in Primates. Arterioscler Thromb Vasc Biol 36:700-6
Vatner, Stephen F (2016) Why So Few New Cardiovascular Drugs Translate to the Clinics. Circ Res 119:714-7
Jose Corbalan, J; Vatner, Dorothy E; Vatner, Stephen F (2016) Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 111:31
Bravo, Claudio A; Vatner, Dorothy E; Pachon, Ronald et al. (2016) A Food and Drug Administration-Approved Antiviral Agent that Inhibits Adenylyl Cyclase Type 5 Protects the Ischemic Heart Even When Administered after Reperfusion. J Pharmacol Exp Ther 357:331-6
Sciarretta, Sebastiano; Yee, Derek; Ammann, Paul et al. (2015) Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes. Clin Sci (Lond) 128:387-403
Yuan, Chujun; Yan, Lin; Solanki, Pallavi et al. (2015) Blockade of EMAP II protects cardiac function after chronic myocardial infarction by inducing angiogenesis. J Mol Cell Cardiol 79:224-31
Ho, David; Zhao, Xin; Yan, Lin et al. (2015) Adenylyl Cyclase Type 5 Deficiency Protects Against Diet-Induced Obesity and Insulin Resistance. Diabetes 64:2636-45
Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E et al. (2015) Myocardial ischemic protection in natural mammalian hibernation. Basic Res Cardiol 110:9

Showing the most recent 10 out of 196 publications