ppnvinFn The long term objective of Core C is to facilitate the isolation of uniform cell populations from human and mice for experimentation. The overall goal of the Program Project is the investigation of modified lipids that may impact on vascular health and promote inflammation. Monocytes and macrophages from humans and mice will be utilized by the different projects. In addition to providing cells, several essential functions will be carried out for efficiency and for centralized expertise. 1. The Core will provide uniformly prepared primary human monocytes, by both elutriation and by adherence isolation. 2. Nucleofectionfor efficient transfection of primary human monocytes will be performed in this Core. 3. The Core will isolate and provide neutrophils. 4. The Core will isolate peritoneal macrophages from wild type and genetically modified mice. 5. The Core will be responsible for maintenance and breeding of mouse strains, and creation of novel strains as necessary. 6. The Core will facilitate surgical techniques and aid with models of peritonitis. This research has specific relevance to inflammatory processes that may underlie diseases such as atherosclerosis, diabetes, metabolic syndrome X, and obesity.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL087018-05
Application #
8266514
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2013-04-30
Budget Start
2011-05-01
Budget End
2013-04-30
Support Year
5
Fiscal Year
2011
Total Cost
$228,442
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Silverstein, Roy L (2018) Oxidized Lipid Uptake by Scavenger Receptor CD36 (Cluster of Differentiation 36) Modulates Endothelial Surface Properties and May Contribute to Atherogenesis. Arterioscler Thromb Vasc Biol 38:4-5
Silverstein, Roy L (2017) Linking Metabolic Dysfunction to Atherosclerosis Via Activation of Macrophage CD36 Gene Transcription by Retinol Binding Protein-4. Circulation 135:1355-1356
Chen, Yiliang; Huang, Wenxin; Yang, Moua et al. (2017) Cardiotonic Steroids Stimulate Macrophage Inflammatory Responses Through a Pathway Involving CD36, TLR4, and Na/K-ATPase. Arterioscler Thromb Vasc Biol 37:1462-1469
Ramakrishnan, Devi Prasadh; Hajj-Ali, Rula A; Chen, Yiliang et al. (2016) Extracellular Vesicles Activate a CD36-Dependent Signaling Pathway to Inhibit Microvascular Endothelial Cell Migration and Tube Formation. Arterioscler Thromb Vasc Biol 36:534-44
Gupta, Nilaksh; Li, Wei; McIntyre, Thomas M (2015) Deubiquitinases Modulate Platelet Proteome Ubiquitination, Aggregation, and Thrombosis. Arterioscler Thromb Vasc Biol 35:2657-66
Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang et al. (2015) Acrolein impairs the cholesterol transport functions of high density lipoproteins. PLoS One 10:e0123138
Chen, Yiliang; Kennedy, David J; Ramakrishnan, Devi Prasadh et al. (2015) Oxidized LDL-bound CD36 recruits an Na?/K?-ATPase-Lyn complex in macrophages that promotes atherosclerosis. Sci Signal 8:ra91
Cathcart, Martha K; Bhattacharjee, Ashish (2014) Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages. Inflamm Cell Signal 1:
Latchoumycandane, Calivarathan; Nagy, Laura E; McIntyre, Thomas M (2014) Chronic ethanol ingestion induces oxidative kidney injury through taurine-inhibitable inflammation. Free Radic Biol Med 69:403-16
Gupta, Nilaksh; Li, Wei; Willard, Belinda et al. (2014) Proteasome proteolysis supports stimulated platelet function and thrombosis. Arterioscler Thromb Vasc Biol 34:160-8

Showing the most recent 10 out of 88 publications