The Notch pathway, as well as potential regulators or effectors HIFa/Notch signaling, have emerged as particularly relevant for establishing and maintaining heart function under hypoxic stress conditions. We generated/collected mutations of HIFa and Notch signaling in multiple cardiac compartments. We have gathered data suggesting that genetic ablation of Notch pathway activity in the mouse myocardium does not lead to cardiac remodeling in response to hypoxic conditions caused by myocardial infarction, but rather has a protective effect on cardiomyocytes after the infarct. Moreover, in the Drosophila heart model, an acute response to hypoxia (slowing of the heart rate) does not occur when Notch signaling is activated in the heart, and chronic hypoxia leads to a non-contractile, infarct-like condition of the heart. In contrast, HIF/Notch mutations in the mouse epicardium are deleterious to heart function, in that the response to transaortic constriction is aggravated and cardiac hypertrophy is increased. Thus, the epicardium plays also a critical role in the cardiac response to hypoxia. Thus, modulation of HIF as well as Notch signaling in various cardiac compartments is critical for the heart to respond and tolerate hypoxic conditions. We hypothesize that the interaction between HIF and Notch pathways are key to the regulation of the response to hypoxia, that HIF/Notch signaling elicits unique responses in the myocardium versus the epicardium, and that the HIF/Notch-dependent mechanisms protect cardiac function. In this proposal, we will study the respective contribution and interactions of HIF and Notch signaling to hypoxia tolerance and susceptibility in the heart. Based on the evolutionary conservation of the hypoxia response, mechanisms of cardiac hypoxia responses identified in the fly heart, involving HIF and Notch signaling, promise to be of relevance to the mammalian heart. Insights gained here are likely to lead to new avenues for finding treatments for hypoxia-induced cardiac injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL098053-05
Application #
8694079
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Walls, Stanley M; Cammarato, Anthony; Chatfield, Dale A et al. (2018) Ceramide-Protein Interactions Modulate Ceramide-Associated Lipotoxic Cardiomyopathy. Cell Rep 22:2702-2715
Zanon, Alessandra; Kalvakuri, Sreehari; Rakovic, Aleksandar et al. (2017) SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila. Hum Mol Genet 26:2412-2425
Diop, Soda Balla; Birse, Ryan T; Bodmer, Rolf (2017) High Fat Diet Feeding and High Throughput Triacylglyceride Assay in Drosophila Melanogaster. J Vis Exp :
Zarndt, Rachel; Walls, Stanley M; Ocorr, Karen et al. (2017) Reduced Cardiac Calcineurin Expression Mimics Long-Term Hypoxia-Induced Heart Defects in Drosophila. Circ Cardiovasc Genet 10:
Díaz-Trelles, Ramón; Scimia, Maria Cecilia; Bushway, Paul et al. (2016) Notch-independent RBPJ controls angiogenesis in the adult heart. Nat Commun 7:12088
Hartley, Paul S; Motamedchaboki, Khatereh; Bodmer, Rolf et al. (2016) SPARC-Dependent Cardiomyopathy in Drosophila. Circ Cardiovasc Genet 9:119-29
Azad, Priti; Zhao, Huiwen W; Cabrales, Pedro J et al. (2016) Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease. J Exp Med 213:2729-2744
Dewan, Sukriti; McCabe, Kimberly J; Regnier, Michael et al. (2016) Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study. J Phys Chem B 120:8264-75
Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran et al. (2016) Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans. PLoS One 11:e0146087
Song, Shanshan; Jacobson, Krista N; McDermott, Kimberly M et al. (2016) ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. Am J Physiol Cell Physiol 310:C99-114

Showing the most recent 10 out of 82 publications