Right ventricular failure is the leading cause of death in patients with severe pulmonary arterial hypertension. While It is known that right heart failure represents a major co-morbidity in advanced lung disease, little is known about right ventricular adaptation and failure within the context of secondary pulmonary hypertension. Interaction between the heart and pulmonary circulation plays an important role in pulmonary vascular stiffening and increased tone thus conferring additional hemodynamic stress on the RV. The initial response of both the pulmonary vasculature and the heart to hemodynamic and neurohormonal stress is hypertrophy. Numerous studies on the /e/i^ ventricle have concluded that hypertrophy often progresses to cardiac dysfunction and maladaptive remodeling culminating in heart failure. Similar events are proposed for the right heart. Currently, we lack an understanding of the fundamental relationship between hypertrophy and failure in the RV as well as the interaction between the heart and lung vasculature, particularly in the setting of secondary PAH. We postulate that common stress pathways in the heart and pulmonary circulation promote increased vascular resistance/remodeling and RV hypertrophy/failure. Consistent with this thesis, preliminary data suggest that increased reactive oxygen species (ROS) signaling and NO synthase uncoupling in both the RV and pulmonary vasculature represent a central pathological stress response in chronic hypoxia and cigarette smoke exposure. Secondary reduction in NO bioavailability in the RV, caused by eNOS dimer formation and increases in pathological eNOS derived ROS/superoxide anion (Oz')-generation is associated with the development of contractile dysfunction and maladaptive remodeling. Preliminary data implicate upstream NADPH oxidase activation in NOS uncoupling. Thus it is hypothesized that a convergent stress response involving ROS generation and eNOS uncoupling drives reduced NOcGMP signaling to produce maladaptive right ventricular and pulmonary vascular remodeling during hemodynamic and/or neurohormonal stress. The following aims will test this hypothesis: (1) determine the role of eNOS uncoupling as a common mechanism in the development of pulmonary vascular and right ventricular maladaptive remodeling;(2) investigate the 'kindling'role of NADPH oxidase (Nox)-derived ROS in eNOS dysfunction promoting feed-fonward ROS generation that leads to vascular and RV maladaptive remodeling;(3) develop and test small molecule inhibitors targeting pathological ROS signaling to prevent RV failure in murine and primate models of PAH.

Public Health Relevance

The proposed studies will add greatly to our basic understanding of cardiopulmonary disease. It is expected that the present proposal will result in new therapeutics to directly target the mechanistic pathways involved in the remodeling of the pulmonary vasculature and right ventricle in conditions of pulmonary hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL103455-01
Application #
7982557
Study Section
Special Emphasis Panel (ZHL1-CSR-A (M1))
Project Start
2011-06-01
Project End
2016-04-30
Budget Start
2011-06-01
Budget End
2012-04-30
Support Year
1
Fiscal Year
2011
Total Cost
$450,912
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Farkas, Daniela; Thompson, A A Roger; Bhagwani, Aneel R et al. (2018) Toll-like Receptor 3 is a Therapeutic Target for Pulmonary Hypertension. Am J Respir Crit Care Med :
Goncharov, Dmitry A; Goncharova, Elena A; Tofovic, Stevan P et al. (2018) Metformin Therapy for Pulmonary Hypertension Associated with Heart Failure with Preserved Ejection Fraction versus Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 198:681-684
Rafikova, Olga; Williams, Elissa R; McBride, Matthew L et al. (2018) Hemolysis-induced Lung Vascular Leakage Contributes to the Development of Pulmonary Hypertension. Am J Respir Cell Mol Biol 59:334-345
Hensley, Matthew K; Levine, Andrea; Gladwin, Mark T et al. (2018) Emerging therapeutics in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 314:L769-L781
Potoka, Karin P; Wood, Katherine C; Baust, Jeffrey J et al. (2018) Nitric Oxide-Independent Soluble Guanylate Cyclase Activation Improves Vascular Function and Cardiac Remodeling in Sickle Cell Disease. Am J Respir Cell Mol Biol 58:636-647
Simon, Marc A; Schnatz, Rick G; Romeo, Jared D et al. (2018) Bedside Ultrasound Assessment of Jugular Venous Compliance as a Potential Point-of-Care Method to Predict Acute Decompensated Heart Failure 30-Day Readmission. J Am Heart Assoc 7:e008184
Levine, Andrea R; Simon, Marc A; Gladwin, Mark T (2018) Pulmonary vascular disease in the setting of heart failure with preserved ejection fraction. Trends Cardiovasc Med :
Khoo, Nicholas K H; Li, Lihua; Salvatore, Sonia R et al. (2018) Electrophilic fatty acid nitroalkenes regulate Nrf2 and NF-?B signaling:A medicinal chemistry investigation of structure-function relationships. Sci Rep 8:2295
Woodcock, Chen-Shan Chen; Huang, Yi; Woodcock, Steven R et al. (2018) Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth. J Biol Chem 293:1120-1137
Raghu, Vineet K; Ramsey, Joseph D; Morris, Alison et al. (2018) Comparison of strategies for scalable causal discovery of latent variable models from mixed data. Int J Data Sci Anal 6:33-45

Showing the most recent 10 out of 182 publications