The Chemistry and Biology of Heparan Sulfate'program project consists of several supporting Cores. This document describes the 'Computational Chemistry and Biology Core'. This Core will be co-ordinated by Dr. Mosier of Virginia Commonwealth University. This Core will be established to primarily address the computational requirements of the PEG and secondarily to serve the needs of the wider glycoscience community. The primary objectives of the Core will be: 1) to perform computational analyses related to the PEG, which will include the Combinatorial Virtual Library Screening (CVLS) experiments;2) to set up, maintain and periodically update the hardware and software required for such analyses;3) to provide on-site and distance-based training for post-doctoral fellows and other scientists of the PEG;4) to facilitate communication among the members of the PEG;5) to disseminate tools, data, and other relevant information to members of the PEG;and 6) to develop advanced computational tools and protocols for better understanding of GAG-protein interactions.

Public Health Relevance

The Computational Chemistry and Biology Core will support the 'The Chemistry and Biology of Heparan Sulfate'program project on all aspects of computational experimentation. The PEG proposes to utilize computational chemistry and biology in the design of heparan sulfate molecules that are potentially useful in the treatment of thrombotic and inflammatory disorders as well as resolve coagulation problems observed in during pig to non-human primate xenotransplantation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107152-04
Application #
8669121
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
4
Fiscal Year
2014
Total Cost
$51,277
Indirect Cost
$16,978
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Afosah, Daniel K; Verespy 3rd, Stephen; Al-Horani, Rami A et al. (2018) A small group of sulfated benzofurans induces steady-state submaximal inhibition of thrombin. Bioorg Med Chem Lett 28:1101-1105
Periasamy, Srinivasan; Lin, Chia-Hui; Nagarajan, Balaji et al. (2018) Mucoadhesive role of tamarind xyloglucan on inflammation attenuates ulcerative colitis. J Funct Foods 47:1-10
Joseph, Prem Raj B; Sawant, Kirti V; Iwahara, Junji et al. (2018) Lysines and Arginines play non-redundant roles in mediating chemokine-glycosaminoglycan interactions. Sci Rep 8:12289
Kishore, Bellamkonda K; Robson, Simon C; Dwyer, Karen M (2018) CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 14:109-120
Boothello, Rio S; Patel, Nirmita J; Sharon, Chetna et al. (2018) A Unique Non-Saccharide Mimetic of Heparin Hexasaccharide Inhibits Colon Cancer Stem Cells via p38 MAP Kinase Activation. Mol Cancer Ther :
Abdel Aziz, May H; Desai, Umesh R (2018) Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 165:61-67
Sepuru, Krishna Mohan; Iwahara, Junji; Rajarathnam, Krishna (2018) Direct detection of lysine side chain NH3+ in protein-heparin complexes using NMR spectroscopy. Analyst 143:635-638
Sepuru, Krishna Mohan; Nagarajan, Balaji; Desai, Umesh R et al. (2018) Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin. J Biol Chem 293:17817-17828
Gangji, Rahaman Navaz; Sankaranarayanan, Nehru Viji; Elste, James et al. (2018) Inhibition of Herpes Simplex Virus-1 Entry into Human Cells by Nonsaccharide Glycosaminoglycan Mimetics. ACS Med Chem Lett 9:797-802
Rajarathnam, Krishna; Sepuru, Krishna Mohan; Joseph, Prem Raj B et al. (2018) Glycosaminoglycan Interactions Fine-Tune Chemokine-Mediated Neutrophil Trafficking: Structural Insights and Molecular Mechanisms. J Histochem Cytochem 66:229-239

Showing the most recent 10 out of 151 publications