Neurobiological studies of major depression have identified dysfunctional cognitive-affective-motor regions; however, the details of these altered physiological and structural changes, and the molecular basis for these alterations, remain to be elucidated. Recent imaging data suggest that depressed patients have increased blood flow/metabolism in the amygdala concomitant with decreased blood flow and volume in orbitofrontal cortex and ventromedial striatum. These effects may be relevant to the psychopathology of depression because cortico-limbic - striatal dysfunction may contribute to hypersensitive stress, fea4r, and anxiety responses, anhedonia, affective alterations, and changes in cognitive function. Thus, it is critical to understand the molecular basis of neuroplasticity in these brain regions implicated in depression and mood disorders and the resulting cellular and behavioral correlates. This project will thus focus on the role for the extended amygdala (notably the central nucleus of the amygdala, and nucleus accumbens shell) in depression and alterations in PKA/CREB signaling in these regions because the involvement of PKA/CREB in learning/plasticity is well established and because antidepressant treatment increases PKA/CREB activity. Specifically the functional and molecular correlates of plasticity in response to stress and antidepressant treatment will be investigated. We hypothesize that alterations in the extended amygdala results in abnormal processing of affective/emotional stimuli and behavioral regulation by appetitive and aversive events. Combined with alterations of neural signaling within the ventral striatum that contribute to anhedonia, negative stimuli may also exert heightened suppressive consequences on behavior in depression. In addition, sustained increases PKA/CREB produced by anti-depressants would be predicted modify behavior by enhancing plasticity associated with learning and affective processes. Using direct pharmacological manipulations, transgenic murine models, vector-mediated over-expression of CREB and stress-induced animal models of depression, we will investigate the role of PKA/CREB signaling within the extended amygdala in reactivity to unconditioned aversive stimuli and/or anhedonia (sensitivity to appetitive rewards), and appropriate control procedures, as well as the mechanism of action of anti-depressant drugs in order to evaluate and validate the relevance of these processes to models of depression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Program Projects (P01)
Project #
2P01MH025642-28
Application #
6646287
Study Section
Special Emphasis Panel (ZMH1)
Project Start
2002-07-16
Project End
2006-06-30
Budget Start
Budget End
Support Year
28
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
Voleti, Bhavya; Navarria, Andrea; Liu, Rong-Jian et al. (2013) Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry 74:742-9
Duric, Vanja; Banasr, Mounira; Stockmeier, Craig A et al. (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 16:69-82
Duric, Vanja; Duman, Ronald S (2013) Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci 70:39-53
Newton, Samuel S; Fournier, Neil M; Duman, Ronald S (2013) Vascular growth factors in neuropsychiatry. Cell Mol Life Sci 70:1739-52
Fournier, Neil M; Lee, Boyoung; Banasr, Mounira et al. (2012) Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology 63:642-52
Fournier, Neil M; Duman, Ronald S (2012) Role of vascular endothelial growth factor in adult hippocampal neurogenesis: implications for the pathophysiology and treatment of depression. Behav Brain Res 227:440-9
Son, Hyeon; Banasr, Mounira; Choi, Miyeon et al. (2012) Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc Natl Acad Sci U S A 109:11378-83
Voleti, Bhavya; Tanis, Keith Q; Newton, Samuel S et al. (2012) Analysis of target genes regulated by chronic electroconvulsive therapy reveals role for Fzd6 in depression. Biol Psychiatry 71:51-8
Kang, Hyo Jung; Voleti, Bhavya; Hajszan, Tibor et al. (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 18:1413-7
Li, Nanxin; Liu, Rong-Jian; Dwyer, Jason M et al. (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754-61

Showing the most recent 10 out of 389 publications