One of the first of the recently-introduced Nikon RCM 8000 scanning confocal microscropes is housed at the Kennedy Center of Albert Einstein College of Medicine, where all of the P.I.s on this Program Project have their laboratories. This instruction moves beyond conventional confocal microscopy, noted for its spatial resolution capacity, to real time full field ratio metric measurements captured at a rate of 30 frames per second, or even faster for smaller parts of the field, while maintaining true confocality. Hence processes such as intracellular and intercellular Ca2+ waves can be monitored temporally and spatially in living cells as they occur, by the application of the current generation of calcium indicators (e.g. Indol and Fluo3). Analysis of Ca2+ waves will be undertaken in astrocytes (Project 2), serial reconstructions of Lucifer yellow dye fills in Schwann cells from injured and normal nerves of wildtype and Cx32 KO animals (Project l) will also take advantage of the rapid scanning capability of the instrument. In addition, the microscope will be used for immunocytological detection of connexin distribution in cells, or in double label experiments, in all of the projects. The excellent spatial resolution of this microscope will be of value not only for generating reconstructed images of gap junction distribution in this projects, but will enable us to determine subcellular distribution of mutant connexins that may be defective in transport to the plasma membrane (Project 3).

Project Start
1998-07-01
Project End
1999-06-30
Budget Start
Budget End
Support Year
29
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Buettner, R; Papoutsoglou, G; Scemes, E et al. (2000) Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc Natl Acad Sci U S A 97:3201-6
Scemes, E; Suadicani, S O; Spray, D C (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20:1435-45
Dermietzel, R; Gao, Y; Scemes, E et al. (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45-56
Scemes, E; Dermietzel, R; Spray, D C (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24:65-73
Scemes, E; Spray, D C (1998) Increased intercellular communication in mouse astrocytes exposed to hyposmotic shocks. Glia 24:74-84
Peinado, A; Yuste, R; Katz, L C (1993) Gap junctional communication and the development of local circuits in neocortex. Cereb Cortex 3:488-98
Barry, M A; Hall, D H; Bennett, M V (1988) The elasmobranch spiracular organ. I. Morphological studies. J Comp Physiol A 163:85-92
Barry, M A; White, R L; Bennett, M V (1988) The elasmobranch spiracular organ. II. Physiological studies. J Comp Physiol A 163:93-8