The objectives of the Human Intensive Care and Outcome Center are: (a) to provide the highest quality care according to a tightly defined clinical protocol, (b) to acquire all clinically relevant variables, (c) to provide coordination of all clinical studies by investigative teams in a manner that is safe, efficient and productive and (d) to document outcome in the patients in the clinical trial. We will accomplish these objectives by 1. providing a group of well defined patients managed in a similar fashion in whom a therapeutic trial can be undertaken, employing a well-defined system of care based on rapid institution of resuscitative measures at the scene of injury with rapid transit to the appropriate facility, aggressive stabilization of vital signs rapid but thorough systemic and neurological evaluation, aggressive diagnosis and treatment of mass lesions,and comprehensive management in an intensive care setting; 2. by collecting serial fashion clinically relevant data that accurately documents the patient's neurologic status, clinical course and eventual outcome with which other investigators will interact; 3. by scheduling, and monitoring all clinical investigative studies so they are performed safely, smoothly and efficiently; 4. by 1 evaluating outcome in the patients in the clinical trial as to their Glasgow outcome score (GOS), neurological examination, neuropsychological testing, neuroelectric testing, assessment of ICP parameters and vascular reactivity, and biochemical determination of appropriate markers of the effects of the proposed drug treatment regimens.

Project Start
Project End
Budget Start
Budget End
Support Year
18
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
City
Richmond
State
VA
Country
United States
Zip Code
23298
Kleindienst, Andrea; Dunbar, Jana G; Glisson, Renee et al. (2013) The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir (Wien) 155:151-64
Fazzina, Giovanna; Amorini, Angela M; Marmarou, Christina R et al. (2010) The protein kinase C activator phorbol myristate acetate decreases brain edema by aquaporin 4 downregulation after middle cerebral artery occlusion in the rat. J Neurotrauma 27:453-61
Hartings, Jed A; Strong, Anthony J; Fabricius, Martin et al. (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26:1857-66
Mazzeo, Anna Teresa; Brophy, Gretchen M; Gilman, Charlotte B et al. (2009) Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 26:2195-206
Samuelson, Rod; Mazzeo, Anna; Kunene, Nikki et al. (2006) Synthes Award For Resident Research On Craniofacial And Brain Injury: effect of cyclosporin A, topiramate, or 100% oxygen as proposed ""neuroprotective"" therapies on the neurochemical analytes in patients with severe traumatic brain injury. Clin Neurosurg 53:307-12
Stiefel, Michael F; Tomita, Yoshiyuki; Marmarou, Anthony (2005) Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg 103:707-14
Stiefel, Michael F; Marmarou, Anthony (2002) Cation dysfunction associated with cerebral ischemia followed by reperfusion: a comparison of microdialysis and ion-selective electrode methods. J Neurosurg 97:97-103
Yamamoto, M; Marmarou, C R; Stiefel, M F et al. (1999) Neuroprotective effect of hypothermia on neuronal injury in diffuse traumatic brain injury coupled with hypoxia and hypotension. J Neurotrauma 16:487-500
Barzo, P; Marmarou, A; Fatouros, P et al. (1997) MRI diffusion-weighted spectroscopy of reversible and irreversible ischemic injury following closed head injury. Acta Neurochir Suppl 70:115-8
Marmarou, A; Barzo, P; Fatouros, P et al. (1997) Traumatic brain swelling in head injured patients: brain edema or vascular engorgement? Acta Neurochir Suppl 70:68-70

Showing the most recent 10 out of 14 publications