The continuing objective of the Program in Cognitive Neuroscience is to elucidate the neural substrate of higher integrative functions of the human brain. The research plan of the Program Project as a whole encompasses the broad range of perceptual and cognitive functions comprising human intellect. Each project focuses on specific sub components of these functions, addresses unresolved issues in perception and cognition research and attempts to identify the representation of functional sub components in the brain. The processes to be studied continue to deal with issues in visual and auditory perception and attention, memory in its various forms, and language. Techniques employed in these studies range from traditional methodologies of cognitive science, to advanced methods of brain imaging, ERP's and psychophysics. The overall strategy is to carefully examine neurologic and neurosurgical patients with focal lesions and/or disconnections. Most studies include focal lesions produced by stroke or neoplasms, epilepsy, or presumed degenerative disease. Each of these patient groups offer unique opportunities to pursue our goal. Determination of the brain mechanisms responsible for normal human cognitive and perceptual processes is an essential aspect for understanding the disease processes that occur with neurologic and mental disease. The purpose of the studies proposed in this application is to help elucidate such processes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS017778-14
Application #
2263289
Study Section
Neurological Disorders Program Project Review A Committee (NSPA)
Project Start
1988-07-01
Project End
1999-06-30
Budget Start
1995-07-01
Budget End
1996-06-30
Support Year
14
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of California Davis
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
094878337
City
Davis
State
CA
Country
United States
Zip Code
95618
Shimamura, Arthur P; Marian, Diane E; Haskins, Andrew L (2013) Neural correlates of emotional regulation while viewing films. Brain Imaging Behav 7:77-84
Shimamura, Arthur P (2010) Hierarchical relational binding in the medial temporal lobe: the strong get stronger. Hippocampus 20:1206-16
Shimamura, Arthur P; Wickens, Thomas D (2009) Superadditive memory strength for item and source recognition: the role of hierarchical relational binding in the medial temporal lobe. Psychol Rev 116:1-19
Miller, Michael B; Donovan, Christa-Lynn; Van Horn, John D et al. (2009) Unique and persistent individual patterns of brain activity across different memory retrieval tasks. Neuroimage 48:625-35
Mullette-Gillman, O'Dhaniel A; Cohen, Yale E; Groh, Jennifer M (2009) Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered reference frame. Cereb Cortex 19:1761-75
Turken, Andu; Whitfield-Gabrieli, Susan; Bammer, Roland et al. (2008) Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 42:1032-44
Saygin, Ayse Pinar; Wilson, Stephen M; Dronkers, Nina F et al. (2004) Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42:1788-804
Bates, Elizabeth; Wilson, Stephen M; Saygin, Ayse Pinar et al. (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448-50
Stone, Valerie E; Cosmides, Leda; Tooby, John et al. (2002) Selective impairment of reasoning about social exchange in a patient with bilateral limbic system damage. Proc Natl Acad Sci U S A 99:11531-6
Eliassen, J C; Baynes, K; Gazzaniga, M S (2000) Anterior and posterior callosal contributions to simultaneous bimanual movements of the hands and fingers. Brain 123 Pt 12:2501-11

Showing the most recent 10 out of 45 publications