The molecular mechanisms responsible for the accumulation and restriction of chemoreceptors beneath presynaptic nerve terminals are poorly understood despite intense research on the subject in the last 15 years. Our goal is to better understand this phenomena by concentrating on defining the function of several proteins implicated in the clustering process. Experiments on cultured vertebrate muscle cells are designed to elucidate the role in this process of an Mr 43000 protein (43K) that is closely associated with acetylcholine receptors (AChRs) both in Torpedo electric organ and vertebrate skeletal muscle preparations. Quantitative fluorescence microscopy will be used to define the relative stochiometery of AChRs to 43K in different membrane regions. This will be followed by experiments on living cultured muscle cells designed to perturb the interaction of 43K with the AChR. Furthermore, we will examine the role of additional receptor associated peripheral proteins that were initially identified in the Torpedo preparations, but have recently been shown to be present in skeletal muscle cells. Finally, the functional studies of live, cultured vertebrate muscle cells will be correlated with immunoelectron microscopy experiments on muscle cells designed to precisely localize the different cluster associated proteins and cytoskeletal elements to which they potentially form linkages.

Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1992
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
062761671
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Czepita, D; Daw, N W (1996) The contribution of NMDA receptors to the visual response in animals that have been partially monocularly deprived. Brain Res 728:7-12
Reid, S N; Daw, N W; Czepita, D et al. (1996) Inhibition of nitric oxide synthase does not alter ocular dominance shifts in kitten visual cortex. J Physiol 494 ( Pt 2):511-7
Sadoulet-Puccio, H M; Khurana, T S; Cohen, J B et al. (1996) Cloning and characterization of the human homologue of a dystrophin related phosphoprotein found at the Torpedo electric organ post-synaptic membrane. Hum Mol Genet 5:489-96
Wang, X F; Daw, N W (1996) Metabotropic glutamate receptors potentiate responses to NMDA and AMPA from layer V cells in rat visual cortex. J Neurophysiol 76:808-15
Raddatz, R; Crankshaw, C L; Snider, R M et al. (1995) Similar rates of phosphatidylinositol hydrolysis following activation of wild-type and truncated rat neurokinin-1 receptors. J Neurochem 64:1183-91
Simmons, M A; Schneider, C R; Krause, J E (1994) Regulation of the responses to gonadotropin-releasing hormone, muscarine and substance P in sympathetic neurons by changes in cellular constituents and intracellular application of peptide fragments of the substance P receptor. J Pharmacol Exp Ther 271:581-9
Daw, N W (1994) Mechanisms of plasticity in the visual cortex. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 35:4168-79
Daw, N W; Stein, P S; Fox, K (1993) The role of NMDA receptors in information processing. Annu Rev Neurosci 16:207-22
Blount, P; Krause, J E (1993) Functional nonequivalence of structurally homologous domains of neurokinin-1 and neurokinin-2 type tachykinin receptors. J Biol Chem 268:16388-95
Kwatra, M M; Schwinn, D A; Schreurs, J et al. (1993) The substance P receptor, which couples to Gq/11, is a substrate of beta-adrenergic receptor kinase 1 and 2. J Biol Chem 268:9161-4

Showing the most recent 10 out of 13 publications