The blood-brain (BBB), whose hallmark is its impermeability, is formed by the brain microvascular endothelium. With the occurrence of a noxious stimulus, activated endothelial cells produce reactive oxygen species (ROS) and release inflammatory mediators. Accumulating evidence suggests that ROS can alter BB permeability and induce cerebral edema and tissue damage, and that the cerebral microvasculature and inflammatory cells are critically involved in this oxidative stress-mediated process. ROS such as superoxide anion are involved in the initiation of immediate cell damage during brain ischemia and injury, as well as in the modulation of cellular signaling and control of gene expression. Thus, antioxidant enzymes that control ROS production possess the ability to effectively modulate the development of brain damage after an insult. The successful development of genetically manipulated mice deficient in or over-expressing the constitutively expressed cytosolic antioxidant, copper/zinc-superoxide dismutase (SOD1), or the inducible mitochondrial antioxidant, manganese-SOD (SOD2), offers a unique opportunity to elucidate, in a molecular fashion, the oxidative mechanisms in brain injury following stroke and mitochondria-related BB dysfunction. Using SOD1- and SOD2-knock-out mutant mice, in addition to SOD1-over-expressors (transgenic[Tg]) and the recently developed SOD2 Tg mice, we will explore the molecular basis of endothelial cell function and injury in the central nervous system. Additionally, we will examine the relationship between mitochondrial dysfunction and microvascular permeability, and the contribution of ROS-induced BBB damage by inflammatory cells. To that end, we will use both in vivo models (transient focal cerebral ischemia and 3-nitroproprionic acid [3-NP-]-induced mitochondrial excitotoxicity) and in vitro (cell culture and microvessel isolation) systems. We believe these are unique and fresh approaches that will provide insights into the oxidative mechanisms of mitochondrial dysfunction that underlies cerebrovascular endothelial cell death/survival in transient focal cerebral ischemia and in 3-NP-induced striatal injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS037520-08
Application #
7271089
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
8
Fiscal Year
2006
Total Cost
$222,930
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Knowland, Daniel; Arac, Ahmet; Sekiguchi, Kohei J et al. (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603-17
Arac, Ahmet; Grimbaldeston, Michele A; Nepomuceno, Andrew R B et al. (2014) Evidence that meningeal mast cells can worsen stroke pathology in mice. Am J Pathol 184:2493-504
Daadi, Marcel M; Hu, Shijun; Klausner, Jill et al. (2013) Imaging neural stem cell graft-induced structural repair in stroke. Cell Transplant 22:881-92
Cheng, Michelle Y; Lee, Alex G; Culbertson, Collin et al. (2012) Prokineticin 2 is an endangering mediator of cerebral ischemic injury. Proc Natl Acad Sci U S A 109:5475-80
Encarnacion, Angelo; Horie, Nobutaka; Keren-Gill, Hadar et al. (2011) Long-term behavioral assessment of function in an experimental model for ischemic stroke. J Neurosci Methods 196:247-57
Horie, Nobutaka; Pereira, Marta P; Niizuma, Kuniyasu et al. (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29:274-85
Andres, Robert H; Horie, Nobutaka; Slikker, William et al. (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134:1777-89
Andres, Robert H; Choi, Raymond; Pendharkar, Arjun V et al. (2011) The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42:2923-31
Cheng, Michelle Y; Lee, I-Ping; Jin, Michael et al. (2011) An insult-inducible vector system activated by hypoxia and oxidative stress for neuronal gene therapy. Transl Stroke Res 2:92-100
Arac, Ahmet; Brownell, Sara E; Rothbard, Jonathan B et al. (2011) Systemic augmentation of alphaB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc Natl Acad Sci U S A 108:13287-92

Showing the most recent 10 out of 117 publications