Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS039577-02
Application #
6410683
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
2000-12-01
Project End
2001-11-30
Budget Start
Budget End
Support Year
2
Fiscal Year
2001
Total Cost
$175,259
Indirect Cost
Name
Washington University
Department
Type
DUNS #
062761671
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Vadivelu, Sudhakar; Stewart, Todd J; Qu, Yun et al. (2015) NG2+ progenitors derived from embryonic stem cells penetrate glial scar and promote axonal outgrowth into white matter after spinal cord injury. Stem Cells Transl Med 4:401-11
Becker, Daniel; Gary, Devin S; Rosenzweig, Ephron S et al. (2010) Functional electrical stimulation helps replenish progenitor cells in the injured spinal cord of adult rats. Exp Neurol 222:211-8
Cui, Lin; Jiang, Jun; Wei, Ling et al. (2008) Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells 26:1356-65
Dilmanian, F Avraham; Qu, Yun; Feinendegen, Ludwig E et al. (2007) Tissue-sparing effect of x-ray microplanar beams particularly in the CNS: is a bystander effect involved? Exp Hematol 35:69-77
Huettner, James E; Lu, Aiwu; Qu, Yun et al. (2006) Gap junctions and connexon hemichannels in human embryonic stem cells. Stem Cells 24:1654-67
Vadivelu, Sudhakar; Platik, Marina M; Choi, Luke et al. (2005) Multi-germ layer lineage central nervous system repair: nerve and vascular cell generation by embryonic stem cells transplanted in the injured brain. J Neurosurg 103:124-35
Vadivelu, Sudhakar; Becker, Daniel; McDonald, John W (2005) Generating chimeric spinal cord: a novel model for transplantable oligodendrocyte progenitors derived from embryonic stem cells. Neurosurg Focus 19:E3
Wei, Ling; Cui, Lin; Snider, B Joy et al. (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19:183-93
Xian, Hai-Qing; Werth, Kelly; Gottlieb, David I (2005) Promoter analysis in ES cell-derived neural cells. Biochem Biophys Res Commun 327:155-62
Lee, Chul-Sang; Tee, Lee Y; Dusenbery, Susan et al. (2005) Neurotrophin and GDNF family ligands promote survival and alter excitotoxic vulnerability of neurons derived from murine embryonic stem cells. Exp Neurol 191:65-76

Showing the most recent 10 out of 22 publications