The function of the Anatomy Core is to provide uniform high-quality, and cost-effective tissue preparation and data collection as well as expert technical assistance to all members of the Program Project in their efforts to further knowledge on the disease mechanisms of and potential therapies for Parkinson's disease (PD). Specifically, the Core will provide access to equipment and will conduct standard histochernical staining, Golgi impregnation, and immunohistochemical- (IHC) staining of rodent and human brain sections for all projects in this application. Standard histochernical and IHC will be utilized by all projects in this application, as will Golgi impregnation for assessment of dendritic spine density and structure in both rat (Projects 1-3) and human (Project 4). An important advantage of concentrating these efforts from all projects into the Core is that tissue is prepared by the same highly experienced personnel using the same methods and quality control protocols. This approach maximizes expertise, cost-effectiveness, and uniformity across the different projects, and provides easy comparison and integration of results obtained from the different projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
1P01NS044282-01
Application #
6614273
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
2002-07-01
Project End
2007-06-30
Budget Start
Budget End
2003-06-30
Support Year
1
Fiscal Year
2002
Total Cost
$162,335
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Mattison, Hayley A; Nie, Hui; Gao, Huiming et al. (2013) Suppressed pro-inflammatory response of microglia in CX3CR1 knockout mice. J Neuroimmunol 257:110-5
Wei, Peng; Pattarini, Roberto; Rong, Yongqi et al. (2012) The Cbln family of proteins interact with multiple signaling pathways. J Neurochem 121:717-29
Rong, Yongqi; Wei, Peng; Parris, Jennifer et al. (2012) Comparison of Cbln1 and Cbln2 functions using transgenic and knockout mice. J Neurochem 120:528-40
Garcia, Bonnie G; Neely, M Diana; Deutch, Ariel Y (2010) Cortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss. Cereb Cortex 20:2423-32
Nikandrova, Yelyzaveta A; Jiao, Yuxia; Baucum, Anthony J et al. (2010) Ca2+/calmodulin-dependent protein kinase II binds to and phosphorylates a specific SAP97 splice variant to disrupt association with AKAP79/150 and modulate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) activity. J Biol Chem 285:923-34
Baucum 2nd, Anthony J; Jalan-Sakrikar, Nidhi; Jiao, Yuxia et al. (2010) Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach. Mol Cell Proteomics 9:1243-59
Kusnoor, S V; Parris, J; Muly, E C et al. (2010) Extracerebellar role for Cerebellin1: modulation of dendritic spine density and synapses in striatal medium spiny neurons. J Comp Neurol 518:2525-37
Kusnoor, Sheila V; Muly, E Chris; Morgan, James I et al. (2009) Is the loss of thalamostriatal neurons protective in parkinsonism? Parkinsonism Relat Disord 15 Suppl 3:S162-6
Nayyar, Tultul; Bubser, Michael; Ferguson, Marcus C et al. (2009) Cortical serotonin and norepinephrine denervation in parkinsonism: preferential loss of the beaded serotonin innervation. Eur J Neurosci 30:207-16
Neely, M Diana; Robert, Elizabeth M; Baucum, Anthony J et al. (2009) Localization of myocyte enhancer factor 2 in the rodent forebrain: regionally-specific cytoplasmic expression of MEF2A. Brain Res 1274:55-65

Showing the most recent 10 out of 31 publications