The long-term objectives of this project are to (i) identify defects in the subsynaptic cytoskeleton related to the failure of LTP consolidation in rodent models of memory/cognitive impairments and (ii) use this information to develop novel, clinically plausible strategies for counteracting the defects. Work in the PPG led to a model of consolidation involving three classes of membrane receptors that collectively regulate dual actin signaling pathways for assembling and stabilizing actin filaments. Our studies then showed that discrete errors are present in this complex system in three distinctly different rodent models of human conditions associated with memory problems. We also found that one of the releasable modifiers (Brain-Derived Neurotrophic Factor: BDNF) in the LTP model offsets defects in synaptic plasticity when applied directly to brain slices or when upregulated by drugs. The proposed experiments will employ a newly developed method that acutely, facilitates BDNF signaling at synapses, make the critical translational step of moving the analysis of signaling failures and potential therapies to behaving animals, and analyze how signaling defects affect the regional distribution ('maps') of LTP-related synaptic changes during learning.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS045260-11
Application #
8723899
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
11
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
City
Irvine
State
CA
Country
United States
Zip Code
92697
Wang, Weisheng; Le, Aliza A; Hou, Bowen et al. (2018) Memory-Related Synaptic Plasticity Is Sexually Dimorphic in Rodent Hippocampus. J Neurosci 38:7935-7951
Wang, W; Cox, B M; Jia, Y et al. (2018) Treating a novel plasticity defect rescues episodic memory in Fragile X model mice. Mol Psychiatry 23:1798-1806
Wang, Yubin; Hall, Randy A; Lee, Moses et al. (2017) The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep 7:11771
Cox, Conor D; Palmer, Linda C; Pham, Danielle T et al. (2017) Experiential learning in rodents: past experience enables rapid learning and localized encoding in hippocampus. Learn Mem 24:569-579
Prieto, G Aleph; Trieu, Brian H; Dang, Cindy T et al. (2017) Pharmacological Rescue of Long-Term Potentiation in Alzheimer Diseased Synapses. J Neurosci 37:1197-1212
Zhu, Guoqi; Briz, Victor; Seinfeld, Jeff et al. (2017) Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Sci Rep 7:42788
Wang, Yubin; Lopez, Dulce; Davey, Pinakin Gunvant et al. (2016) Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury. Neurobiol Dis 93:121-8
Seinfeld, Jeff; Baudry, Neema; Xu, Xiaobo et al. (2016) Differential Activation of Calpain-1 and Calpain-2 following Kainate-Induced Seizure Activity in Rats and Mice. eNeuro 3:
Chen, Yuncai; Molet, Jenny; Lauterborn, Julie C et al. (2016) Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses. J Neurosci 36:11295-11307
Wang, Yubin; Hersheson, Joshua; Lopez, Dulce et al. (2016) Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep 16:79-91

Showing the most recent 10 out of 100 publications