Compelling evidence demonstrates that the brain's capacity to utilize glucose and respond to insulin is impaired in Alzheimer's disease (AD). A striking finding from human studies is the unique susceptibility of particular brain regions, particularly the """"""""default mode network"""""""" (DMN) of the brain, to A? deposition in AD and cortical volume loss in diabetes. Although the cause of this regional disparity is unknown, understanding characteristics common to these regions could elucidate mechanisms of selective vulnerability in AD and perhaps lead to new treatment strategies. The DMN is a set of widespread but interconnected brain regions, with increased glucose uptake in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water, which we refer to as glycolysis. It has been hypothesized that the DMN's high rate of glycolysis augments an activity-dependent or metabolism-dependent cascade that is conducive to the formation of brain pathology in diseases such as AD, thus leading to the observed preferential vulnerability of this network. It is unclear whether increased glucose/insulin levels can increase glycolysis within the DMN above a certain threshold that could make brain tissue more vulnerable to A? deposition, damage or dysfunction. Data suggest that brain insulin dysregulation may be a critical aspect of AD risk. These relationships are of particular interest given the increased risk of AD in patients suffering from diabetes. Project 1 tests whether hyperglycemia and/or hyperinsulinemia affect glycolysis (as measured through PET imaging) in the DMN and whether the precuneus region is preferentially affected in the brains of controls and of those at higher risk for developing AD (older adults and in patients with Type 2 Diabetes (T2DM) with defective insulin signaling). Results will address fundamental questions about normal human brain metabolism as well as provide systems-level neurobiological data implicating alterations in glucose and insulin in DMN vulnerability.

Public Health Relevance

This work will determine if hyperglycemia and hyperinsulinemia, at levels commonly experienced by humans with diabetes, affect glycolysis in the DMN, a fundamental brain metabolic process, which may have profound clinical implications. Characterizing the pattern of these effects on glycolysis could provide support for a plausible neurobiological mechanism linking Alzheimer disease (AD) and diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
1P01NS080675-01A1
Application #
8605610
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-07-15
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$489,743
Indirect Cost
$167,543
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Mitra, Anish; Kraft, Andrew; Wright, Patrick et al. (2018) Spontaneous Infra-slow Brain Activity Has Unique Spatiotemporal Dynamics and Laminar Structure. Neuron 98:297-305.e6
Snyder, Abraham Z; Bauer, Adam Q (2018) Mapping Structure-Function Relationships in the Brain. Biol Psychiatry Cogn Neurosci Neuroimaging :
Blazey, Tyler; Snyder, Abraham Z; Su, Yi et al. (2018) Quantitative positron emission tomography reveals regional differences in aerobic glycolysis within the human brain. J Cereb Blood Flow Metab :271678X18767005
Goyal, Manu S; Raichle, Marcus E (2018) Glucose Requirements of the Developing Human Brain. J Pediatr Gastroenterol Nutr 66 Suppl 3:S46-S49
Su, Yi; Vlassenko, Andrei G; Couture, Lars E et al. (2017) Quantitative hemodynamic PET imaging using image-derived arterial input function and a PET/MR hybrid scanner. J Cereb Blood Flow Metab 37:1435-1446
Andrew, Robert J; Fernandez, Celia G; Stanley, Molly et al. (2017) Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A 114:E9665-E9674
Reisman, Matthew D; Markow, Zachary E; Bauer, Adam Q et al. (2017) Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice. Neurophotonics 4:021102
Kraft, Andrew W; Mitra, Anish; Bauer, Adam Q et al. (2017) Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism. Proc Natl Acad Sci U S A 114:E9952-E9961
Harris, Richard A; Tindale, Lauren; Lone, Asad et al. (2016) Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis. J Neurosci 36:1871-8
Stanley, Molly; Macauley, Shannon L; Caesar, Emily E et al. (2016) The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-? in Young and Old APP/PS1 Mice. J Neurosci 36:11704-11715

Showing the most recent 10 out of 33 publications