In this P01 resubmission proposal entitled Pathobiology of Neurodegeneration in C9ORF72 Repeat Expansion, we seek to evaluate the mechanisms of C9ORF72 expanded repeats, the most common cause of amyotrophic lateral sclerosis (ALS) and front temporal dementia (FTD), to improve the diagnosis of and prognosis for patients suffering from c9FTD/ALS. We have assembled a world-class team combining expertise in neurology, genetics, neuropathology, and cell biology that has worked closely together and has all resources in place. Our significant progress to elucidate how expanded repeat RNA transcripts and epigenetic changes may respectively drive toxicity and haploinsufficiency in c9FTD/ALS has led to the discovery that repeat expansion size does affect disease severity, and the identification of a potential biomarker detectable in blood of c9FTD/ALS patients. We now present evidence that aberrant methylation of histone 3 at lysine 9 is detectable in brain tissue, fibroblasts and blood of C9ORF72 mutation carriers. We also identified TMEM106B as the first genetic modifier of disease phenotype in C9FTD/ALS. In drawing upon the strengths of the Mayo Clinic Neurology Department, we have begun longitudinal studies of 44 C9ALS pedigrees to determine whether expansion size, tri-methylation of histone lysine residues, mRNA expression levels and TMEM106B genotypes, correlate with phenotypic variability in c9FTD/ALS. In addition, we have since produced and characterized antibodies critical for detecting each of the five repeat-associated non-ATG (RAN) translation peptides [poly(GP), poly(GA), poly(GR), poly(PA) and poly(PR)] in cell and animal models as well as human tissue. We also provide evidence that ubiquilin-2, tau and p62/sequestosome are present in neuronal inclusions in various brain regions and spinal cord, indicating that these proteins, in addition to TDP-43, may play a role in pathogenesis of front temporal lobar degeneration with TDP-43 pathology (FTLD-TDP). We provide preliminary data that TDP-43-negative/C9RANT-positive neuronal inclusions can also be detected with antibodies to dimethylarginine, suggesting a new disease mechanism involving non-histone protein methylation. Simply put, our multi-disciplinary studies will improve understanding of C9ORF72-related neurodegeneration, identify potential biomarkers and therapeutic targets, and develop a compelling brain, biofluid and biopsy resource to aid future drug discovery.

Public Health Relevance

Amyotrophic lateral sclerosis (ALS) is an incurable disease of nerve cells that control muscles. Some patients with ALS have mental and behavioral abnormalities similar to frontotemporal dementia (FTD). Researchers in this program project aim to discover the cellular disease processes initiated by mutations in the C9ORF72 gene in order to improve the diagnosis of and prognosis for patients suffering from disorders collectively referred to as c9FTD/ALS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS084974-05
Application #
9540092
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Sutherland, Margaret L
Project Start
2014-09-30
Project End
2019-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Mayo Clinic Jacksonville
Department
Type
DUNS #
153223151
City
Jacksonville
State
FL
Country
United States
Zip Code
32224
Eftekharzadeh, Bahareh; Daigle, J Gavin; Kapinos, Larisa E et al. (2018) Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 99:925-940.e7
Nicolas, Aude (see original citation for additional authors) (2018) Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 97:1268-1283.e6
Nicholson, Alexandra M; Zhou, Xiaolai; Perkerson, Ralph B et al. (2018) Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Acta Neuropathol Commun 6:42
Kang, Silvia S; Ebbert, Mark T W; Baker, Kelsey E et al. (2018) Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 215:2235-2245
Gendron, Tania F; Petrucelli, Leonard (2018) Disease Mechanisms of C9ORF72 Repeat Expansions. Cold Spring Harb Perspect Med 8:
Ebbert, Mark T W; Farrugia, Stefan L; Sens, Jonathon P et al. (2018) Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 13:46
Wang, Zi-Fu; Ursu, Andrei; Childs-Disney, Jessica L et al. (2018) The Hairpin Form of r(G4C2)exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules. Cell Chem Biol :
Sakae, Nobutaka; Bieniek, Kevin F; Zhang, Yong-Jie et al. (2018) Poly-GR dipeptide repeat polymers correlate with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathol Commun 6:63
Mordes, Daniel A; Prudencio, Mercedes; Goodman, Lindsey D et al. (2018) Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathol Commun 6:55
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558

Showing the most recent 10 out of 45 publications