The Bioinformatics Core will provide the computing skills, facilities, and data management infrastructure for researchers in Idaho. The Core Director and the Bioinformatics Core Committee are well-qualified and will manage the services of the Core across Idaho. They will participate in faculty/student training and education and provide access to high-end computational power to augment research projects within the INBRE scientific focus area of 'Cell Signaling'. Research excellence will be emphasized in three areas, (i) evolutionary analysis, (ii) gene expression analysis, and (iii) protein structure analysis and proteomics. The University of Idaho will host local databases and a distributed cluster computer for statistical modeling and phylogenetic estimation. Idaho State University will host a distributed cluster computer and software tightly integrated with their high throughput sequencing facility. Boise State University will host a distributed cluster computer and software closely integrated with their mass spectrometer facility. Multiple approaches will be used to familiarize investigators and students with bioinformatics tools and resources. We will partner with Idaho's one COBRE to fund Technology Access Grants'to scientifically meritorious projects and offset user fees for INBRE participants. Managing large datasets is often an issue. The Northwest Knowledge Network (NKN), under the University of Idaho's Office of Research and Economic Development, provides comprehensive scientific data life cycle management services. Idaho INBRE will partner with the NKN to leverage this service and provide the highest quality cyberinfrastructure to researchers. To augment educational opportunities, the University of Idaho will continue to offer the INBRE-initiated MS/PhD program in Bioinformatics and Computational Biology. To complement the program, a cooperative BS/MS bioinformatics training program will be developed between Boise State University and Idaho State University to direct graduates into industry laboratories as bioinformaticians and/or to provide the prerequisites for a PhD program: Also, training and education will be enhanced with a web-based Idaho INBRE 'Virtual Bioinformatics Academy'designed as an open resource for educators and students. A dedicated INBRE website section will hold bioinformatics lectures, laboratory exercises, assessment tools and supplementary materials so that faculty can help students develop computing skills. Bioinformatics training will be integrated into our existing summer undergraduate research opportunities through workshops and a bootcamp. Finally, we will share bioinformatics expertise and infrastructure across the Western IDeA region.

Public Health Relevance

The INBRE Bioinformatics Core provides a needed research and educational resource in Idaho. Access to high performance computing is a requisite component for research competitiveness. Also, a quality science education must include understanding the power of high performance computing. A signal that we are succeeding in this ongoing endeavor is that the bioinformatics facilities across Idaho, that INBRE help start, are either self-sustaining or on that trajectory.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM103408-14
Application #
8716047
Study Section
Special Emphasis Panel (ZGM1-TWD-3 (IN))
Project Start
Project End
2019-04-30
Budget Start
2014-06-01
Budget End
2015-04-30
Support Year
14
Fiscal Year
2014
Total Cost
$143,773
Indirect Cost
$41,956
Name
University of Idaho
Department
Type
DUNS #
075746271
City
Moscow
State
ID
Country
United States
Zip Code
83844
Boursier, Michelle E; Moore, Joseph D; Heitman, Katherine M et al. (2018) Structure-Function Analyses of the N-Butanoyl l-Homoserine Lactone Quorum-Sensing Signal Define Features Critical to Activity in RhlR. ACS Chem Biol 13:2655-2662
Rohn, Troy T; Mack, Jacob M (2018) Apolipoprotein E Fragmentation within Lewy Bodies of the Human Parkinson's Disease Brain. Int J Neurodegener Dis 1:
Culbertson, Vaughn L; Rahman, Shaikh E; Bosen, Grayson C et al. (2018) Implications of Off-Target Serotoninergic Drug Activity: An Analysis of Serotonin Syndrome Reports Using a Systematic Bioinformatics Approach. Pharmacotherapy 38:888-898
Misra, N; Wines, T F; Knopp, C L et al. (2018) Immunogenicity of a Staphylococcus aureus-cholera toxin A2/B vaccine for bovine mastitis. Vaccine 36:3513-3521
Sheng, Haiqing; Duan, Mingrui; Hunter, Samuel S et al. (2018) High-Quality Complete Genome Sequences of Three Bovine Shiga Toxin-ProducingEscherichia coliO177:H- (fliCH25) Isolates Harboring Virulentstx2and Multiple Plasmids. Genome Announc 6:
Mitchell, Diana M; Lovel, Anna G; Stenkamp, Deborah L (2018) Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. J Neuroinflammation 15:163
Eberle, Sarah; Dezoumbe, Djeneba; McGregor, Rhegan et al. (2018) Hierarchical Assessment of Mutation Properties in Daphnia magna. G3 (Bethesda) 8:3481-3487
Gunderson, Mark P; Nguyen, Brandon T; Cervantes Reyes, Juan C et al. (2018) Response of phase I and II detoxification enzymes, glutathione, metallothionein and acetylcholine esterase to mercury and dimethoate in signal crayfish (Pacifastacus leniusculus). Chemosphere 208:749-756
Thyagaraj, Suraj; Pahlavian, Soroush Heidari; Sass, Lucas R et al. (2018) An MRI-Compatible Hydrodynamic Simulator of Cerebrospinal Fluid Motion in the Cervical Spine. IEEE Trans Biomed Eng 65:1516-1523
Misra, N; Pu, X; Holt, D N et al. (2018) Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J Dairy Sci 101:6296-6309

Showing the most recent 10 out of 275 publications