The University of Kansas Medical Center (KUMC) here presents an application for continued support for the Kansas IDeA Network for Biomedical Research Excellence (K-INBRE). The K-INBRE links KUMC (Lead Institution) with the two other major doctoral-degree-granting institutions in Kansas (University of Kansas- Lawrence, KU-L;Kansas State University, KSU) as Graduate Partner Institutions (GPI) and with seven Undergraduate Partner Institutions (UPI). UPI include six Kansas undergraduate campuses (Emporia State University, Ft. Hays State University, Haskell Indian Nations University, Pittsburg State University, Washburn University, Wichita State University) and Langston University (Langston, OK). Haskell Indian Nations University and Langston University increase diversity in the network as the first is devoted to education and training of native Americans and the second enrolls primarily black undergraduates. The long-range objective of the Kansas program is to strengthen the state's research capacity in Cell and Developmental Biology by building on the successes of the current K-INBRE. The size, structure and operational principles of the K-INBRE, which include strong emphasis on training for biomedical research, networking and intercampus communication and the establishment of a sophisticated bioinformatics program, were established during the previous years of support. These goals remain basically the same as the K-INBRE has had a major positive impact on biomedical research in the State of Kansas. Programs conducted by the K-INBRE have had measurable success in reaching their stated goals as well as those of the NCRR IDeA program.
The Specific Aims proposed for the next phase of the K-INBRE are to (1) maintain and improve the current multi-disciplinary research network in Cell and Developmental Biology with efficient administration and focus on networking, (2) enhance science and technology knowledge and integration by offering sophisticated bioinformatics technology and education, (3) facilitate translational research via bidirectional exchange of basic and clinical scientist training opportunities. Within these Aims, new features that improve the K-INBRE include broadening funding for research careers together with improvements in oversight and the mentoring process, promoting an integrated systems biology approach within our bioinformatics network, and incorporating training for translational research into the K-INBRE goals so as to smooth the progress of scientific discoveries into the clinical arena.

Public Health Relevance

Research in cell and developmental biology is essential to advancing our understanding of cellular processes of health and disease. Such research relies on generation of a strong, well educated workforce, ready availability of the tools of discovery and emphasis on applying the results of discovery research to problems of human health. In building a distinguished center of research in cell and developmental biology in Kansas, the K-INBRE vigorously pursues all three of these key strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103418-13
Application #
8479382
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Program Officer
Douthard, Regine
Project Start
2001-09-18
Project End
2014-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
13
Fiscal Year
2013
Total Cost
$3,466,063
Indirect Cost
$896,896
Name
University of Kansas
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
016060860
City
Kansas City
State
KS
Country
United States
Zip Code
66160
Cooper, Michael A; O'Meara, Bryn; Jack, Megan M et al. (2018) Intrinsic Activity of C57BL/6 Substrains Associates with High-Fat Diet-Induced Mechanical Sensitivity in Mice. J Pain 19:1285-1295
Bandyopadhyay, Arnab; Wang, Huijing; Ray, J Christian J (2018) Lineage space and the propensity of bacterial cells to undergo growth transitions. PLoS Comput Biol 14:e1006380
Kaplan, Sam V; Limbocker, Ryan A; Levant, Beth et al. (2018) Regional differences in dopamine release in the R6/2 mouse caudate putamen. Electroanalysis 30:1066-1072
Reiner, David J; Lundquist, Erik A (2018) Small GTPases. WormBook 2018:1-65
Roggenkamp, Emily; Giersch, Rachael M; Schrock, Madison N et al. (2018) Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae. G3 (Bethesda) 8:999-1018
Evans, Kara C; Benomar, Saida; Camuy-VĂ©lez, Lennel A et al. (2018) Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME J 12:1263-1272
Basgall, Erianna M; Goetting, Samantha C; Goeckel, Megan E et al. (2018) Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164:464-474
Alam, S M K; Jasti, S; Kshirsagar, S K et al. (2018) Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod Sci 25:185-197
Raman, Archana; Parnell, Stephen C; Zhang, Yan et al. (2018) Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. Am J Physiol Renal Physiol :
Sawant, Ketki; Chen, Yujun; Kotian, Nirupama et al. (2018) Rap1 GTPase promotes coordinated collective cell migration in vivo. Mol Biol Cell 29:2656-2673

Showing the most recent 10 out of 411 publications