OVERALL The Kansas IDeA Network of Biomedical Research Excellence (K-INBRE) is a statewide network of graduate and undergraduate universities in Kansas and Oklahoma that work cooperatively to improve biomedical research in Kansas. Kansas formed such a network in 2001 (Kansas BRIN) and has successfully continued as the Kansas INBRE. The University of Kansas Medical Center (KUMC) is the Lead Institution and works closely with 2 other Graduate Partner Institutions (GPI) (University of Kansas-Lawrence, KU-L; Kansas State University, KSU;) and 7 institutions focused on undergraduate student training [Undergraduate Partner Institution or UPI: Emporia State University (ESU), Fort Hays State University (FHSU), Haskell Indian Nations University (HINU), Langston University (LU, Langston, OK), Pittsburg State University (PSU), Washburn University (WU), and Wichita State University, WSU]. The K-INBRE is focused on 1) ethnic diversity and geographic considerations in our large but sparsely populated state, 2) the power of mentored, team science, and 3) a skilled Kansas workforce and integration with existing educational and training programs. The long-range objectives are to promote multidisciplinary research networks with a focus on Cell and Developmental Biology; increase the research base and capacity through research support; provide research opportunities for trainees; serve as a pipeline for students to continue in health research careers; and enhance science and technology knowledge of Kansas workforce. To achieve the objectives of the K-INBRE, the proposal contains key elements as 4 Specific Aims and 3 Cores.
Aim 1 seeks to improve the multidisciplinary research network in Kansas. The K-INBRE Administrative Core provides oversight of all K-INBRE functions and includes the Incentives & Awards Committee and the Undergraduate Research Office. The Communications Core focuses on network communications, scholarship and internal evaluations.
Aim 2 enhances science and technology knowledge through sophisticated bioinformatics technology and education. The K-INBRE Bioinformatics Core continues to focus on enhanced genomics bioinformatics, bioinformatics education, outreach and education.
Aim 3 stimulates basic, translational and entrepreneurial research in Kansas via mentored, interdisciplinary research opportunities. The Mentoring Core oversees 2 mentoring programs and the Developmental Research Project Program. The K-INBRE operates as a very successful program and continues to improve and expand our efforts in Cell and Developmental Biology research in Kansas. New innovations include an expansion of our pipeline to high school students and integration with existing educational/training programs in Kansas, as well as strong collaborations with other IDeA (INBRE and COBRE) programs in Kansas and in the Central IDeA Region.
The Kansas IDeA Network of Biomedical Research Excellence (K-INBRE) is a statewide network of Universities in Kansas and Oklahoma that work together to augment the research infrastructure, training, research productivity, and career development of biomedical researchers in Kansas. The K-INBRE has diverse programs to support researcher pipelines and research careers, build research infrastructure, and enhance the competitiveness of Kansas biomedical researchers. The strength of the program is its long-standing collaborative network, and success in pipeline development for students, trainees, and faculty in biomedical research. K- INBRE operates through four outstanding cores that have strengths in mentoring, bioinformatics, communications, and administration of this longstanding Kansas program.
Cooper, Michael A; O'Meara, Bryn; Jack, Megan M et al. (2018) Intrinsic Activity of C57BL/6 Substrains Associates with High-Fat Diet-Induced Mechanical Sensitivity in Mice. J Pain 19:1285-1295 |
Bandyopadhyay, Arnab; Wang, Huijing; Ray, J Christian J (2018) Lineage space and the propensity of bacterial cells to undergo growth transitions. PLoS Comput Biol 14:e1006380 |
Kaplan, Sam V; Limbocker, Ryan A; Levant, Beth et al. (2018) Regional differences in dopamine release in the R6/2 mouse caudate putamen. Electroanalysis 30:1066-1072 |
Reiner, David J; Lundquist, Erik A (2018) Small GTPases. WormBook 2018:1-65 |
Roggenkamp, Emily; Giersch, Rachael M; Schrock, Madison N et al. (2018) Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae. G3 (Bethesda) 8:999-1018 |
Evans, Kara C; Benomar, Saida; Camuy-VĂ©lez, Lennel A et al. (2018) Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME J 12:1263-1272 |
Basgall, Erianna M; Goetting, Samantha C; Goeckel, Megan E et al. (2018) Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164:464-474 |
Alam, S M K; Jasti, S; Kshirsagar, S K et al. (2018) Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod Sci 25:185-197 |
Raman, Archana; Parnell, Stephen C; Zhang, Yan et al. (2018) Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. Am J Physiol Renal Physiol : |
Sawant, Ketki; Chen, Yujun; Kotian, Nirupama et al. (2018) Rap1 GTPase promotes coordinated collective cell migration in vivo. Mol Biol Cell 29:2656-2673 |
Showing the most recent 10 out of 411 publications