The mission of the Nebraska IDeA Networks of Biomedical Research Excellence (NE-INBRE) is to stimulate and develop biomedical research capacity at institutions of higher education in Nebraska. The NE-INBRE is structured around two major components: primary undergraduate institutions (PUIs) and PhD granting research institutions (RIs). Support for each PUI consists of: 1) campus research capacity development through support for faculty research and infrastructure enhancement, and 2) development of the undergraduate research pipeline of students through the NE-INBRE Scholars Program. Two features are associated with expanding research capacity at the RIs: 1) providing significant support to multi-user core facilities in order to allow investigators from PUIs and RIs access to cutting-edge technology, and 2) providing support in the form of first-year graduate assistantships for NE-INBRE scholars who matriculate into PhD programs at the RI campuses. The nine participating PUIs in the NE-INBRE research network include two publically supported State Colleges, three campuses of the University of Nebraska system, and four private institutions. The three participating RIs in the research network include two campuses of the University of Nebraska system and one privately supported medical center. Cutting edge multiuser core facilities include cores in genomics, bioinformatics, structural biology and imaging. The three themes reflect the scientific foci of the NE-INBRE, cell signaling and neuroscience, infectious disease, and structural biology and molecular biophysics. These themes serve to link faculty and students at the separate institutions into productive networks based on their areas of expertise and interest. Throughout the tenure of the NE-INBRE, its primary objective at the undergraduate level has been to provide and expand research opportunities for students and create a pipeline of students to enter into biomedical research and other health professions. NE-INBRE investments in faculty research projects and infrastructure at the PUIs have created opportunities for both NE- INBRE scholars and other undergraduate students to become involved in advanced biomedical research.
The 'Nebraska Research Network in Functional Genomics, NE-INBRE, is designed to increase the biomedical research and training capacity at institutions of higher education and contribute to the development of the scientific workforce in the state. Primary undergraduate institutions (PUIs) receive funding to enhance their faculty research and establish modern laboratories, thus providing opportunities for undergraduate students to engage in modern research and consider entering career in research and or the health professions. Research universities receive funding to support the development of multiuser core facilities that make cutting edge technology available to research programs on these campuses.
Wipfler, Kristin; Cornish, Adam S; Guda, Chittibabu (2018) Comparative molecular characterization of typical and exceptional responders in glioblastoma. Oncotarget 9:28421-28433 |
Fletcher, James T; Hanson, Matthew D; Christensen, Joseph A et al. (2018) Revisiting ring-degenerate rearrangements of 1-substituted-4-imino-1,2,3-triazoles. Beilstein J Org Chem 14:2098-2105 |
Barta, Cody L; Liu, Huizhan; Chen, Lei et al. (2018) RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells. Sci Data 5:180005 |
Sanford, A G; Schulze, T T; Potluri, L P et al. (2018) Novel Toxoplasma gondii inhibitor chemotypes. Parasitol Int 67:107-111 |
Sorgen, Paul L; Trease, Andrew J; Spagnol, Gaelle et al. (2018) Protein?Protein Interactions with Connexin 43: Regulation and Function. Int J Mol Sci 19: |
Liu, Huizhan; Chen, Lei; Giffen, Kimberlee P et al. (2018) Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front Mol Neurosci 11:356 |
Wehrkamp, Cody J; Natarajan, Sathish Kumar; Mohr, Ashley M et al. (2018) miR-106b-responsive gene landscape identifies regulation of Kruppel-like factor family. RNA Biol 15:391-403 |
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J et al. (2018) Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 4:123-139 |
Fletcher, James T; Sobczyk, Jill M; Gwazdacz, Sarah C et al. (2018) Antimicrobial 1,3,4-trisubstituted-1,2,3-triazolium salts. Bioorg Med Chem Lett 28:3320-3323 |
Kumar, Vinod; Kumar, Virender; Chaudhary, Amit Kumar et al. (2018) Impact of miRNA-mRNA Profiling and Their Correlation on Medulloblastoma Tumorigenesis. Mol Ther Nucleic Acids 12:490-503 |
Showing the most recent 10 out of 146 publications