Impaired socio-emotional (SE) functioning is a prominent feature of schizophrenia (SZ), especially the ability to perceive emotion in faces and prosody. Conceivably, such deficits result in difficulties integrating into society and thus maintaining friendships and relationships at work. Compared to other psychiatric population such as bipolar disorder (BP), SZ patients experience greater impairments in SE functioning and poorer functional outcome than BP patients. Therefore, understanding how deficits in SE neurocircuitry contribute to different levels of social and occupational functioning in SZ relative to BP and healthy controls (HC) can provide important knowledge for developing specific training programs and treatments that target different psychiatric populations. This project will apply multimodal neuroimaging - Magnetoencephalography (MEG) and Diffusion Tensor Imaging (DTI) - to assess the underlying mechanisms of altered SE functioning in SZ and BP patients. MEG'S unique combination of temporal and spatial resolution, in combination with structural MRl (sMRI), provides information on brain processes occurring millisecond by millisecond and is able to evaluate top-down and bottom-up emotional processing at different stages. DTI adds complementary information about how white matter integrity contributes to deficits at different stages of emotion processing. To better understand how SE impairment mediates social functioning in SZ, the proposed research will (1) evaluate the SE neural networks unique to and shared in SZ and BP by measuring brain activity and structures associated with SE processing via the use of MEG, sMRI, and DTI; (2) evaluate the social functioning differences between SZ and BP by assessing the ability to perceive emotion and the ability to integrate social skills in society using cognitive and psychosocial measures; and (3) evaluate associations between neural networks and associated anatomy and performance on psychosocial and social functioning measures. Together, the aims of this project will provide a novel dataset that will elucidate the common and unique aspects of SE functioning in SZ, BP, and HC.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103472-10
Application #
9276020
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
2019-04-30
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
10
Fiscal Year
2017
Total Cost
Indirect Cost
Name
The Mind Research Network
Department
Type
DUNS #
098640696
City
Albuquerque
State
NM
Country
United States
Zip Code
87106
Agcaoglu, O; Miller, R; Damaraju, E et al. (2018) Decreased hemispheric connectivity and decreased intra- and inter- hemisphere asymmetry of resting state functional network connectivity in schizophrenia. Brain Imaging Behav 12:615-630
Rashid, Barnaly; Blanken, Laura M E; Muetzel, Ryan L et al. (2018) Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder. Hum Brain Mapp 39:3127-3142
Allen, E A; Damaraju, E; Eichele, T et al. (2018) EEG Signatures of Dynamic Functional Network Connectivity States. Brain Topogr 31:101-116
Osuch, E; Gao, S; Wammes, M et al. (2018) Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients. Acta Psychiatr Scand 138:472-482
Bridwell, David A; Rachakonda, Srinivas; Silva, Rogers F et al. (2018) Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data. Brain Topogr 31:47-61
Liu, Jingyu; Chen, Jiayu; Perrone-Bizzozero, Nora et al. (2018) A Perspective of the Cross-Tissue Interplay of Genetics, Epigenetics, and Transcriptomics, and Their Relation to Brain Based Phenotypes in Schizophrenia. Front Genet 9:343
Mennigen, Eva; Miller, Robyn L; Rashid, Barnaly et al. (2018) Reduced higher-dimensional resting state fMRI dynamism in clinical high-risk individuals for schizophrenia identified by meta-state analysis. Schizophr Res 201:217-223
Fu, Zening; Tu, Yiheng; Di, Xin et al. (2018) Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. Neuroimage :
Hjelm, R Devon; Damaraju, Eswar; Cho, Kyunghyun et al. (2018) Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks. Front Neurosci 12:600
Fang, Jian; Xu, Chao; Zille, Pascal et al. (2018) Fast and Accurate Detection of Complex Imaging Genetics Associations Based on Greedy Projected Distance Correlation. IEEE Trans Med Imaging 37:860-870

Showing the most recent 10 out of 222 publications