Body weight is determined by the balance between energy input and expenditure. Skeletal muscle is major site of mitochondrial oxidative metabolism of fatty acids and glucose and thereby plays a central role in whole body energy expenditure. Accordingly, preservation or promotion of skeletal muscle metabolism could play a critical role in protection from diet induced obesity. Understanding the mechanisms that regulate skeletal muscle metabolism and their relationship to those controlling fatty storage and mobilization is therefore a critical goal in metabolic disease research. Lipinl is a phosphatidic acid (PA) phosphatase enzyme that catalyzes the penultimate step in triglyceride synthesis at the cytoplasmic surface of the endoplasmic reticulum and also serves as a nuclear transcriptional co-activator of PPAR-a responsive genes. Lipinl deficient mice (fatty liver dystrophy mice, fid mice) exhibit impaired adipocyte differentiation, circulating hyperlipidemia and neonatal hepatic steatosis associated with diminished rates of hepatic fatty acid oxidation. Lipinl is also expressed in skeletal muscle and transgenic overexpression of lipinl in this tissue reverses many ofthe phenotypes of lipinl deficient fid mice. Interestingly, humans with heritable lipinl null mutations present with severe rhabdomyolysis (skeletal, muscle degeneration) characterized by impaired carnitine palmitoyi acyltransferase (CPT) activity, decreased mitochondrial fatty oxidation and respiratory chain function and the consequent destruction of skeletal muscle fibers. We made the seminal observation that lipinl is recruited to the mitochondrial surface where it promotes mitochondrial fission and remodels mitochondrial lipids, suggesting that lipinl deficiency impacts directly on mitochondrial function. Based on these observations we propose that lipinl is poised to function as a link between fatty acid and carbohydrate metabolism in muscle and fat. Accordingly, we hypothesize that recruitment of lipinl to mitochondria directly promotes mitochondrial respiratory function and beta-oxidation through effects on mitochondrial homeostasis and lipid composition and that this is particularly important for skeletal muscle function in energy metabolism. In direct support of our hypothesis, we found mitochondrial respiratory function is impaired in lipinl deficient mouse embryo fibroblasts and mitochondria isolated from skeletal muscle of lipinl deficient rnice. The broad goal of this research is to define the role of Lipinl in mitochondrial function and skeletal muscle physiology.
Aim 1 defines the role of muscle cell lipinl PA phosphatase activity in regulating mitochondrial lipid composition and function, while Aim 2 examines deletion of skeletal muscle lipinl in lean and obese mice.

Public Health Relevance

Lipin l is emerging as a master regulator of metabolism. Inter-individual variation in lipinl expression and alterations in lipinl mRNA processing have been associated with human susceptibility to diet induced obesity. Our proposed studies promise to reveal a new facet of lipinl function in skeletal muscle and to define the role of lipinl as a link between fat storage in adipose tissue and consumption of mobilized fatty acids by skeletal muscle mitochondrial oxidative metabolism.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103527-07
Application #
8733725
Study Section
Special Emphasis Panel (ZGM1-TWD-Y)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$255,066
Indirect Cost
$85,066
Name
University of Kentucky
Department
Type
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Deng, Pan; Barney, Jazmyne; Petriello, Michael C et al. (2018) Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere 217:140-149
Al-Darraji, Ahmed; Haydar, Dalia; Chelvarajan, Lakshman et al. (2018) Azithromycin therapy reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction: Potential therapeutic targets in ischemic heart disease. PLoS One 13:e0200474
Zaytseva, Yekaterina Y; Rychahou, Piotr G; Le, Anh-Thu et al. (2018) Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget 9:24787-24800
Meier, Shelby; Gilad, Assaf A; Brandon, J Anthony et al. (2018) Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded CEST-MRI reporter gene in the murine heart. Sci Rep 8:4638
Wehner, Gregory J; Jing, Linyuan; Haggerty, Christopher M et al. (2018) Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR. J Cardiovasc Magn Reson 20:63
Stewart, Bradley D; Scott, Caitlin E; McCoy, Thomas P et al. (2018) Computational modeling of amylin-induced calcium dysregulation in rat ventricular cardiomyocytes. Cell Calcium 71:65-74
Rotroff, Daniel M; Pijut, Sonja S; Marvel, Skylar W et al. (2018) Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes. Clin Pharmacol Ther 103:712-721
Thompson, Joel C; Wilson, Patricia G; Shridas, Preetha et al. (2018) Serum amyloid A3 is pro-atherogenic. Atherosclerosis 268:32-35
Klyachkin, Yuri M; Idris, Amr; Rodell, Christopher B et al. (2018) Cathelicidin Related Antimicrobial Peptide (CRAMP) Enhances Bone Marrow Cell Retention and Attenuates Cardiac Dysfunction in a Mouse Model of Myocardial Infarction. Stem Cell Rev 14:702-714
Alshudukhi, Abdullah A; Zhu, Jing; Huang, Dengtong et al. (2018) Lipin-1 regulates Bnip3-mediated mitophagy in glycolytic muscle. FASEB J :fj201800374

Showing the most recent 10 out of 235 publications