Individuals with Parkinson's disease (PD) not only have an accelerated decline in substantia nigra dopamine (SN-DA) neurons and locus coeruleus norepinephrine (LC-NA) neurons; they also have reduced SN brain-derived neurotrophic factor (BDNF) levels and increased oxidative stress. Preliminary studies from our laboratory show that chronic vagus nerve stimulation (VNS) retains the number of DAergic and NAergic neurons, improves locomotor activity, and increases BDNF in the brain. Preclinical studies have shown that VNS exerts its protective effects via brainstem nuclei, such as the LC. The use of vagus nerve stimulation (VNS) has already been implemented for the clinical use of treatment-resistant depression and epilepsy. To date, no studies have assessed the effects of VNS on PD pathology and motor dysfunction VNS models have shown increased NAergic levels and BDNF expression in LC target regions via PPAR? activation. In addition VNS has been shown to exert anti-oxidant effects in various peripheral and central nervous system models. Based on these findings we want to further explore the use of VNS as a treatment strategy for PD. In addition, we want to determine a potential mechanism by which VNS is exerting its neuroprotective effects, specifically, if VNS has anti-oxidant and neuroprotective signaling effects in a double lesion model of PD. Our overall hypothesis is that chronic vagus nerve stimulation will alleviate PD-like pathology and motor dysfunction as a result of combined DAergic/NAergic degeneration via PPAR? activation: 1) as an antioxidant to reduce oxidative stress and 2) as a transcription factor to increase BDNF expression. To address this hypothesis, two aims were formulated:
Aim 1) Chronic vagus nerve stimulation attenuates motor impairment and DAergic/NAergic degeneration by reducing oxidative stress via PPAR? activation;
and Aim 2) Chronic vagus nerve stimulation abrogates DAergic/NAergic degeneration by increasing BDNF expression and activation of the BDNF receptor, TrkB. Findings from these studies will provide insight into the mechanism by which VNS alleviates neuronal damage as a result of PD. Furthermore, these studies will provide information on novel treatment strategies, VNS and the systemic administration of PPAR? agonists, to be implemented in clinics for PD patients.

Public Health Relevance

While vagus nerve stimulation (VNS) is already used in the clinic for treatment-resistant depression and epilepsy, it has not been explored as a treatment strategy for Parkinson's disease (PD). The vagus nerve sends projections to brainstem nuclei, which then relays signals to midbrain and upper cortical levels, the same regions that degenerate in PD patients. Therefore, the purpose of this project is to identify and validate novel treatment strategies targeting motor dysfunction as well as dopamine and noradrenergic degeneration in PD patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103542-07
Application #
9341351
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
7
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29403
Monteiro, Liziane O F; Fernandes, Renata S; Oda, Caroline M R et al. (2018) Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed Pharmacother 97:489-495
Womersley, Jacqueline S; Townsend, Danyelle M; Kalivas, Peter W et al. (2018) Targeting redox regulation to treat substance use disorder using N-acetylcysteine. Eur J Neurosci :
Herr, Daniel J; Baarine, Mauhamad; Aune, Sverre E et al. (2018) HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. J Mol Cell Cardiol 114:309-319
Angel, Peggi M; Comte-Walters, Susana; Ball, Lauren E et al. (2018) Mapping Extracellular Matrix Proteins in Formalin-Fixed, Paraffin-Embedded Tissues by MALDI Imaging Mass Spectrometry. J Proteome Res 17:635-646
Hedges, David M; Obray, J Daniel; Yorgason, Jordan T et al. (2018) Methamphetamine Induces Dopamine Release in the Nucleus Accumbens Through a Sigma Receptor-Mediated Pathway. Neuropsychopharmacology 43:1405-1414
Ramshesh, Venkat K; Lemasters, John J (2018) Imaging of Mitochondrial pH Using SNARF-1. Methods Mol Biol 1782:351-356
DeHart, David N; Lemasters, John J; Maldonado, Eduardo N (2018) Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discov 23:23-33
Mazza, Alberto; Lenti, Salvatore; Schiavon, Laura et al. (2018) Effect of Monacolin K and COQ10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome. Biomed Pharmacother 105:992-996
Fernandes, Renata S; Silva, Juliana O; Seabra, HeloĆ­sa A et al. (2018) ?- Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomed Pharmacother 103:1348-1354
Zhang, Jie; Ye, Zhi-Wei; Chen, Wei et al. (2018) S-Glutathionylation of estrogen receptor ? affects dendritic cell function. J Biol Chem 293:4366-4380

Showing the most recent 10 out of 109 publications