This continuation renewal seeks support for years 6-10 for our Center of Biomedical Research Excellence (COBRE) in Oxidants, Redox Balance, and Stress Signaling at the Medical University of South Carolina (MUSC). Investigator projects focus on human pathologies that include many of the perceived strengths of MUSC including, cancer, cardiovascular disease, neurodegenerative disorders and drug/alcohol addiction and have additional components of drug discovery and development. In each instance the interface of these diseases with oxidant stress, redox homeostasis and stress signaling provides the fundamentals for the programmatic development of the Center. We plan to develop these assets further via clusters of 5 projects and 5 Cores involving 10 established scientists from 4 academic disciplines, with project Directors being from 4 different departments from 2 colleges. Because of increased demand and at the behest of our EAC, we have added a new core (Analytical Redox), in concert to the existing facilities (Proteomics, Cell and Molecular Imaging, Bioenergetics Profiling, Administrative). The COBRE has a number of faculty members who have graduated following successful grant awards garnered in years 1-4, most of whom remain affiliated with the program. Research projects for the five target mentees cover: resistance to drugs that target the proteasome in multiple myeloma, redox regulation of cancer stem cell growth, ROS in mitochondrial anion channel functions, ROS in mitochondrial function in aortic valve stenosis and antioxidants in vagus nerve stimulation in Parkinson's disease. Mentoring and career development efforts also provide critical mass in sustaining scientific growth and development of independent research careers through the COBRE. As with the previous period as junior faculty members achieve success, there are plans for the COBRE Directors to recruit between 3 and 6 individuals over the next five years, providing a cadre of new investigators eligible for the COBRE program. This COBRE includes cross-college and inter-department collaborations, with the Directors having leadership roles in the Colleges of Medicine and Pharmacy, the Hollings Cancer Center and South Carolina Center for Therapeutic Discovery and Development. This incorporates the recruitment of endowed chairs that can participate as mentors and laboratory space in the Drug Discovery Building. During Phase I, we have partnered with COBRE's from the University of South Carolina (USC) and Nebraska to foster teaching, research collaborations and technical expertise. Our Phase II COBRE will continue to emphasize the efforts of junior faculty, to expand and sharpen their research programs. Independent research projects and proposals, robust interactions among established investigators in oxidative stress signaling, along with effective mentoring will continue to be the overriding goals for this COBRE renewal.

Public Health Relevance

While oxygen provides the most efficient way to produce energy through oxidative phosphorylation, paradoxically it also produces toxic byproducts. Through adaptation, organisms have evolved numerous redox- based stress pathways to counteract this toxicity. In human diseases, these pathways can sometimes malfunction leading to a broad range of human maladies. This COBRE seeks to support faculty and their research in these areas, to build a sustainable Center that can provide a focal effort to comprehend the integral importance of redox stress signaling in human diseases and the treatment thereof.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103542-10
Application #
10005385
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Gao, Hongwei
Project Start
2011-09-01
Project End
2021-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
10
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Pharmacology
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29407
DeHart, David N; Lemasters, John J; Maldonado, Eduardo N (2018) Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discov 23:23-33
Mazza, Alberto; Lenti, Salvatore; Schiavon, Laura et al. (2018) Effect of Monacolin K and COQ10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome. Biomed Pharmacother 105:992-996
Fernandes, Renata S; Silva, Juliana O; Seabra, HeloĆ­sa A et al. (2018) ?- Tocopherol succinate loaded nano-structed lipid carriers improves antitumor activity of doxorubicin in breast cancer models in vivo. Biomed Pharmacother 103:1348-1354
Zhang, Jie; Ye, Zhi-Wei; Chen, Wei et al. (2018) S-Glutathionylation of estrogen receptor ? affects dendritic cell function. J Biol Chem 293:4366-4380
Davis Jr, Warren; Tew, Kenneth D (2018) ATP-binding cassette transporter-2 (ABCA2) as a therapeutic target. Biochem Pharmacol 151:188-200
Mulligan, Jennifer K; Patel, Kunal; Williamson, Tucker et al. (2018) C3a receptor antagonism as a novel therapeutic target for chronic rhinosinusitis. Mucosal Immunol 11:1375-1385
Fernandes, Renata S; Silva, Juliana O; Mussi, Samuel V et al. (2018) Nanostructured Lipid Carrier Co-loaded with Doxorubicin and Docosahexaenoic Acid as a Theranostic Agent: Evaluation of Biodistribution and Antitumor Activity in Experimental Model. Mol Imaging Biol 20:437-447
Angel, Peggi M; Mehta, Anand; Norris-Caneda, Kim et al. (2018) MALDI Imaging Mass Spectrometry of N-glycans and Tryptic Peptides from the Same Formalin-Fixed, Paraffin-Embedded Tissue Section. Methods Mol Biol 1788:225-241
DeHart, David N; Fang, Diana; Heslop, Kareem et al. (2018) Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol 148:155-162
Angel, Peggi M; Norris-Caneda, Kim; Drake, Richard R (2018) In Situ Imaging of Tryptic Peptides by MALDI Imaging Mass Spectrometry Using Fresh-Frozen or Formalin-Fixed, Paraffin-Embedded Tissue. Curr Protoc Protein Sci 94:e65

Showing the most recent 10 out of 109 publications