Myocardial infarction and hypertrophic cardiomyopathy followed by heart failure is a major cause of death worldwide. As the terminally differentiated adult cardiomyocytes possess a very limited innate ability to regenerate, much research has focussed on exploring the potential of adult stem cells and induced pluripotent stem cells to repair the damaged myocardium. However with regards to benefits till date, experimental and clinical trials have shown sub-optimal to modest results. The main drawback for this is that the mechanisms involved for the in vivo therapy is not well understood. Suggested pathways include permanent or partial cell fusion between stem cells and resident cardiac cells, transdifferentiation of stem cells into cardiac and vascular cells and secretion of proangiogenic paracrine factors. However, none of them have considered the fact that the dynamic cardiac microenvironment can also induce significant biological effects on the transplanted stem cells that can influence their overall fate and functionality. In this project we will study, for the first time, the fundamental microenvironmental interactions between mesenchymal stem cells and contractile cardiomyocytes in a continuously beating 3D microenvironment that can influence the clinical outcomes when transplanted in patients with cardiomyopathy. Furthermore, we will also study the potential of the mechano-biologically activated stem cells, pre-conditioned in this 3D cardiac microenvironment, for myocardial regeneration therapy in animal model. Established collaborations with members (physicians and scientists) from the Midwest Stem Cell Therapy Center (MSCTC) at KU Medical Center, The KU Center for Epigenetics and Stem Cell Biology (CESCB), KU Center for Molecular Analysis of Disease Pathways (CMADP) and University of Cincinnati Cardiovascular Disease Center will provide further support and guidance to successfully pursue the project.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103638-09
Application #
9994338
Study Section
Special Emphasis Panel (ZGM1)
Project Start
2017-07-15
Project End
2018-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
9
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Kansas Lawrence
Department
Type
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Kaplan, Sam V; Limbocker, Ryan A; Levant, Beth et al. (2018) Regional differences in dopamine release in the R6/2 mouse caudate putamen. Electroanalysis 30:1066-1072
Reiner, David J; Lundquist, Erik A (2018) Small GTPases. WormBook 2018:1-65
Evans, Kara C; Benomar, Saida; Camuy-VĂ©lez, Lennel A et al. (2018) Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME J 12:1263-1272
Al-Hashimi, Hikmat; Hall, David H; Ackley, Brian D et al. (2018) Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in Caenorhabditis elegans. Genetics 210:637-652
Yang, Yang; Zeng, Yong (2018) Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays. Lab Chip 18:3830-3839
Modaresi, Saman; Pacelli, Settimio; Whitlow, Jonathan et al. (2018) Deciphering the role of substrate stiffness in enhancing the internalization efficiency of plasmid DNA in stem cells using lipid-based nanocarriers. Nanoscale 10:8947-8952
Smith, Brittny R; Unckless, Robert L (2018) Draft Genome Sequence of Lysinibacillus fusiformis Strain Juneja, a Laboratory-Derived Pathogen of Drosophila melanogaster. Genome Announc 6:
Knewtson, Kelsey E; Rane, Digamber; Peterson, Blake R (2018) Targeting Fluorescent Sensors to Endoplasmic Reticulum Membranes Enables Detection of Peroxynitrite During Cellular Phagocytosis. ACS Chem Biol 13:2595-2602
Gujar, Mahekta R; Sundararajan, Lakshmi; Stricker, Aubrie et al. (2018) Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 210:235-255
Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B et al. (2018) Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death Dis 9:245

Showing the most recent 10 out of 134 publications