In this COBRE, novel approaches to developing chemical probes and therapeutic leads will be pursued by a diverse team of scientists. This COBRE will create new libraries for high-throughput screening, provide new perspectives on innate immune response and neurodegenerative disease, enable new screening technology, and advance the state of the art in virtual screening. The proposed COBRE will build a network of scientific collaboration throughout the UD campus through five subprojects: 1. Development of an Immunostimulatory Small Molecule Library 2. In vitro neural disease models for high throughput drug screening 3. New Synthetic Methods for Diverse Small Molecule Library Preparation 4. Electrochemical Chemiluminescent Arrays and Emitters for Rapid Chemical Probe Identification 5. Realizing the predictive promise of high throughput virtual screening The proposed COBRE will establish a regional network of biomedical collaboration between scientists at UD and the Nemours Center for Childhood Cancer Research. In a rich collaboration across all five subprojects, UD researchers will interface extensively with scientists from the NCI Molecular Targets Laboratory (MTL) and Chemical Biology Laboratories (CBL), with interactions that include mentorship by NCI scientists, crosstraining experiences for graduate students at NCI, and collaborative mechanisms for follow-up on promising discoveries. With new core instrumentation and facilities, this COBRE will increase the infrastructure for biomedical research at UD. The scope of the center will be further expanded through faculty recruitment and seed grants, and via explicit mechanisms that will facilitate both biological and chemical follow-up on initial discoveries. This COBRE will also establish a mentoring network that will support the career development of assistant faculty, and place them on an accelerated path toward independent funding.

Public Health Relevance

The medicinal field is currently limited by the ability to discover new classes of molecules that can probe and treat human disease. The proposed work will have impact on discovery of molecules that can be used to study and treat a number of diseases, including cancer, Crohn's disease, Huntington's disease, Alzheimer's disease, and Creutzfeldt-Jakob disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM104316-01A1
Application #
8624842
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Liu, Yanping
Project Start
2014-09-01
Project End
2019-05-31
Budget Start
2014-09-01
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Delaware
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Newark
State
DE
Country
United States
Zip Code
19716
Liang, Hai; Zhou, Guangfeng; Ge, Yunhui et al. (2018) Elucidating the inhibition of peptidoglycan biosynthesis in Staphylococcus aureus by albocycline, a macrolactone isolated from Streptomyces maizeus. Bioorg Med Chem 26:3453-3460
Wu, Pengcheng; Yap, Glenn P A; Theopold, Klaus H (2018) Structure and Reactivity of Chromium(VI) Alkylidenes. J Am Chem Soc 140:7088-7091
O'Brien, Jessica G K; Chintala, Srinivasa R; Fox, Joseph M (2018) Stereoselective Synthesis of Bicyclo[6.1.0]nonene Precursors of the Bioorthogonal Reagents s-TCO and BCN. J Org Chem 83:7500-7503
Guan, Weiye; Liao, Jennie; Watson, Mary P (2018) Vinylation of Benzylic Amines via C-N Bond Functionalization of Benzylic Pyridinium Salts. Synthesis (Stuttg) 50:3231-3237
Allgood, Samual C; Neunuebel, M Ramona (2018) The recycling endosome and bacterial pathogens. Cell Microbiol 20:e12857
Fang, Yinzhi; Zhang, Han; Huang, Zhen et al. (2018) Photochemical syntheses, transformations, and bioorthogonal chemistry of trans-cycloheptene and sila trans-cycloheptene Ag(i) complexes. Chem Sci 9:1953-1963
Rowland, Casey A; Lorzing, Gregory R; Gosselin, Eric J et al. (2018) Methane Storage in Paddlewheel-Based Porous Coordination Cages. J Am Chem Soc 140:11153-11157
Lyman, Edward; Hsieh, Chia-Lung; Eggeling, Christian (2018) From Dynamics to Membrane Organization: Experimental Breakthroughs Occasion a ""Modeling Manifesto"". Biophys J 115:595-604
Zhang, Zhengqi; Liu, Jun; Rozovsky, Sharon (2018) Preparation of Selenocysteine-Containing Forms of Human SELENOK and SELENOS. Methods Mol Biol 1661:241-263
DeMeester, Kristen E; Liang, Hai; Jensen, Matthew R et al. (2018) Synthesis of Functionalized N-Acetyl Muramic Acids To Probe Bacterial Cell Wall Recycling and Biosynthesis. J Am Chem Soc 140:9458-9465

Showing the most recent 10 out of 93 publications