The accumulation of somatic (non-heritable) DNA mutations over time is a hallmark and potential mechanism of aging. Current theory postulates that un-repaired, stochastic DNA damage results in random DNA mutations that accumulate over time within individual cells, and are passed on as these cells replicate. These mutations are thought to impair cellular function, or to induce cell death or senescence, leading to impaired organ function and aging. Alternately, rare mutations may lead to cellular transformation and cancer. These theories depend upon the extent of mutations accumulated in tissues with age, but we do not have an accurate measurement of the mammalian somatic mutation rate. In the this study, we will utilize high-throughput sequencing and rigorous statistical methods to empirically measure the whole-genome somatic mutation rate in cells of the hematopoietic lineage from genetically identical mice collected at birth, sexual maturity, and old age. Our analyses of these data will determine the extent to which somatic mutations are associated with age, cellular turnover, proliferation, and functional decline. Further, we will explore the potential mechanisms of lifespan extension conferred by treatment with rapamycin by measuring the whole-genome somatic mutation rate in treatment animals and controls. This multi-factorial study of somatic mutations will provide the most accurate measurement of the mammalian somatic mutation rate to date, will begin to define the parameters that control the accumulation of mutations with age, and will begin to empirically test common theories of cancer and aging.

Public Health Relevance

The accumulation of damage to DNA is central to the development of cancer and to the aging process, but the extent and dynamics of mutation accumulation in mammals are poorly understood. The proposed research will characterize the dynamics of mutations accumulated during hematopolesis, which are potentially relevant for a range of blood cancers, hemophilia, and other serious conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM104318-01
Application #
8465641
Study Section
Special Emphasis Panel (ZGM1-TWD-B (CB))
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$436,325
Indirect Cost
$18,250
Name
Mount Desert Island Biological Lab
Department
Type
DUNS #
077470003
City
Salsbury Cove
State
ME
Country
United States
Zip Code
04672
Waldron, Ashley L; Schroder, Patricia A; Bourgon, Kelly L et al. (2018) Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. J Diabetes Complications 32:249-257
Beck, Samuel; Rhee, Catherine; Song, Jawon et al. (2018) Implications of CpG islands on chromosomal architectures and modes of global gene regulation. Nucleic Acids Res 46:4382-4391
Lee, Bum-Kyu; Uprety, Nadima; Jang, Yu Jin et al. (2018) Fosl1 overexpression directly activates trophoblast-specific gene expression programs in embryonic stem cells. Stem Cell Res 26:95-102
Hampton, Thomas H; Jackson, Craig; Jung, Dawoon et al. (2018) Arsenic Reduces Gene Expression Response to Changing Salinity in Killifish. Environ Sci Technol 52:8811-8821
Yin, Viravuth P (2018) In Situ Detection of MicroRNA Expression with RNAscope Probes. Methods Mol Biol 1649:197-208
King, Benjamin L; Rosenstein, Michael C; Smith, Ashley M et al. (2018) RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. NPJ Regen Med 3:10
Lavine, Kory J; Pinto, Alexander R; Epelman, Slava et al. (2018) The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J Am Coll Cardiol 72:2213-2230
Yamada, Toshiki; Strange, Kevin (2018) Intracellular and extracellular loops of LRRC8 are essential for volume-regulated anion channel function. J Gen Physiol 150:1003-1015
Duong, Michelle; Yu, Xuejiao; Teng, Beina et al. (2017) Protein kinase C ? stabilizes ?-catenin and regulates its subcellular localization in podocytes. J Biol Chem 292:12100-12110
Lisse, Thomas S; Rieger, Sandra (2017) IKK? regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci 130:975-988

Showing the most recent 10 out of 76 publications