The University of Nebraska-Lincoln, in partnership with the University of Nebraska Medical Center, proposes to establish the Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules (NPOD) as a Center of Biomedical Research Excellence. NPOD will unite research strengths in nutrient signaling to develop junior faculty talent and utilize novel approaches in discovery-based research and translation to combat the growing epidemic of obesity-related disorders through consumer friendly and cost-efficient intervention strategies, beginning with a focus on cardiovascular disease, diabetes, and non-alcoholic fatty liver disease. NPOD will create a nationally recognized center charged with developing and sustaining a critical mass of investigators dedicated to obesity research and leverage Center discoveries to devise and implement effective strategies for the prevention of obesity-related diseases through the dietary manipulation of nutrient signaling pathways. The Center's goals will be accomplished through three specific aims to: (1) establish an administrative core and programs to support and enhance NPOD research;(2) develop a critical mass of faculty through the support of five thematically linked primary research projects, a vigorous mentoring program for Project Leaders, a pilot grant program, a Molecular Biology, Bioinformatics and Biostatistics Core facility, and a research tool development program in the Core;and (3) increase research capacity through targeted recruitment of researchers in areas key to Center success. NPOD's world-class, multidisciplinary research environment will be instrumental in supporting the development of strategies to prevent cardiovascular disease, diabetes, and non-alcoholic fatty liver disease;creating a skilled workforce in a national priority area;implementing techniques fo translating discoveries in the laboratory to inform clinical practice and influence consumer behavior;and utilizing innovative approaches to instant sharing of research data and dissemination of recommendations for consumers. NPOD investigators bring the breadth of expertise necessary to accomplish the Center's grand vision and share the common tenant that obesity-related diseases can be prevented through the manipulation of nutrient signaling pathways and that this prevention strategy is attractive and accessible to consumers, thus holding great potential for long-term national impact.

Public Health Relevance

Preventing obesity-related diseases through use of dietary compounds has strong potential to improve human health through strategies that are user-friendly, non-invasive, and cost effective. NPOD, which is governed by the hypothesis that building a critical mass of well-mentored investigators will yield important gains in the preventio of obesity diseases through dietary molecules, is expected to make significant and lasting contributions to the health and well-being of United States citizens.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM104320-01A1
Application #
8624887
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C1))
Program Officer
Liu, Yanping
Project Start
2014-08-05
Project End
2019-05-31
Budget Start
2014-08-05
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
$2,516,001
Indirect Cost
$680,648
Name
University of Nebraska Lincoln
Department
Miscellaneous
Type
Schools of Education
DUNS #
555456995
City
Lincoln
State
NE
Country
United States
Zip Code
68583
Hakguder, Zeynep; Shu, Jiang; Liao, Chunxiao et al. (2018) Genome-scale MicroRNA target prediction through clustering with Dirichlet process mixture model. BMC Genomics 19:658
McAtee, Caitlin O; Booth, Christine; Elowsky, Christian et al. (2018) Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biol :
Manca, Sonia; Upadhyaya, Bijaya; Mutai, Ezra et al. (2018) Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep 8:11321
E Silva, Bruno Vieira Resende; Rad, Milad Ghiasi; Cui, Juan et al. (2018) A Mobile-Based Diet Monitoring System for Obesity Management. J Health Med Inform 9:
Fan, Rong; Toney, Ashley Mulcahy; Jang, Yura et al. (2018) Maternal n-3 PUFA supplementation promotes fetal brown adipose tissue development through epigenetic modifications in C57BL/6 mice. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1488-1497
Nordgren, Tara M; Heires, Art J; Zempleni, Janos et al. (2018) Bovine milk-derived extracellular vesicles enhance inflammation and promote M1 polarization following agricultural dust exposure in mice. J Nutr Biochem 64:110-120
Martínez, Inés; Maldonado-Gomez, Maria X; Gomes-Neto, João Carlos et al. (2018) Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. Elife 7:
Zhang, Hanyuan; Vieira Resende E Silva, Bruno; Cui, Juan (2018) miRDis: a Web tool for endogenous and exogenous microRNA discovery based on deep-sequencing data analysis. Brief Bioinform 19:415-424
Leiferman, Amy; Shu, Jiang; Grove, Ryan et al. (2018) A diet defined by its content of bovine milk exosomes and their RNA cargos has moderate effects on gene expression, amino acid profiles and grip strength in skeletal muscle in C57BL/6 mice. J Nutr Biochem 59:123-128
Okla, Meshail; Zaher, Walid; Alfayez, Musaad et al. (2018) Inhibitory Effects of Toll-Like Receptor 4, NLRP3 Inflammasome, and Interleukin-1? on White Adipocyte Browning. Inflammation 41:626-642

Showing the most recent 10 out of 68 publications