Obesity and hypertension (i.e. metabolic syndrome) are highly prevalent in patients who experience myocardial infarction (MI). In addition to increasing the risk of developing MI, these risk factors also promote adverse left ventricular remodeling after MI and thus increase the development of heart failure after MI. However, the mechanisms by which obesity and hypertension interact to promote aberrant post-MI outcomes are not well understood. One possible mechanism is through inflammation, in which monocytes/macrophages play key roles. While macrophages are critical for normal wound healing and resolution of inflammation, they can also promote inadequate healing and exacerbate inflammation during chronic disease states. Following MI, monocytes quickly invade the necrotic LV and differentiate into MI pro-inflammatory macrophages to generate an inflammatory response, then as wound healing progresses differentiate or ?polarize? into M2 anti-inflammatory macrophages to resolve inflammation. Immune cell metabolism (immunometabolism) has been identified as a key factor dictating polarization; however, the role of immunometabolism following MI has not been investigated. Cardiac metabolism is impaired by chronic stressors on the heart, such as obesity and hypertension, and these changes in metabolism contribute to disease progression. Thus, the main goal of this study is to identify how obesity and hypertension interact to affect cardiac macrophage polarization and metabolism after MI, and whether manipulating macrophage metabolism can improve post-MI outcomes in metabolic syndrome. To accomplish this goal, mice will be fed a chronic high fat and high fructose (i.e. Western) diet to induce obesity, and hypertension will be surgically induced by abdominal aortic coarctation. Mice will then be given MI by permanent coronary artery ligation. Macrophage polarization and metabolic phenotypes will be assessed by fluorescence activated cell sorting (FACS), RNA-Seq, and glycolytic and Oxidative metabolism.
In Aim 2, mice will be administered 2-deoxyglucose to perturb glucose metabolism and sodium nitrite to enhance mitochondrial fatty acid oxidation. Macrophage phenotypes will be linked to post-MI outcomes such as survival, cardiac function, and cardiac remodeling.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM104357-08
Application #
10269071
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Bernal, Federico
Project Start
2020-08-20
Project End
2023-04-30
Budget Start
2020-08-20
Budget End
2021-04-30
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Mississippi Medical Center
Department
Type
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
Lindsey, Merry L; Kassiri, Zamaneh; Virag, Jitka A I et al. (2018) Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 314:H733-H752
Wang, Lin; Quan, Nanhu; Sun, Wanqing et al. (2018) Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res 114:805-821
Lv, Wenshan; Fan, Fan; Wang, Yangang et al. (2018) Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol Genomics 50:20-34
Li, Xuan; Liu, Jia; Hu, Haiyan et al. (2018) Dichloroacetate ameliorates cardiac dysfunction caused by ischemic insults through AMPK signal pathway- not only shifts metabolism. Toxicol Sci :
Spann, Redin A; Lawson, William J; Bidwell 3rd, Gene L et al. (2018) Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development. Clin Sci (Lond) 132:295-312
Clemmer, John S; Pruett, William Andrew; Hester, Robert L et al. (2018) Role of the Heart in Blood Pressure Lowering During Chronic Baroreflex Activation: Insight from an in Silico Analysis. Am J Physiol Heart Circ Physiol :
Mahajan, Gouri J; Vallender, Eric J; Garrett, Michael R et al. (2018) Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 82:177-186
Shekhar, Shashank; Cunningham, Mark W; Pabbidi, Mallikarjuna R et al. (2018) Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 833:531-544
Lindsey, Merry L; Jung, Mira; Hall, Michael E et al. (2018) Proteomic analysis of the cardiac extracellular matrix: clinical research applications. Expert Rev Proteomics 15:105-112
Lindsey, Merry L; Mouton, Alan J; Ma, Yonggang (2018) Adding Reg3? to the acute coronary syndrome prognostic marker list. Int J Cardiol 258:24-25

Showing the most recent 10 out of 254 publications