Fetal hyperglycemia occurs when the developing fetus is exposed to high levels of glucose. For example in humans, this is the case when the mother has diabetes. Fetal hyperglycemia is linked to health complications for the fetus, including preeclamsia, fetal macrosomia and even fetal death. In addition, fetal hyperglycemia also increases the risk for the individual to develop a variety of diseases later in life. Adults exposed to fetal hyperglycemia are more susceptible to obesity, insulin resistance, type 2 diabetes, cardiovascular diseases and several metabolic syndromes. To date, the physiological and molecular mechanisms that underlie the link between fetal hyperglycemia and the adult sequelae are poorly understood. The central goal of this project is to examine the physiological and molecular basis of metabolic diseases in adults exposed to high levels of glucose only during embryogenesis. To accomplish this goal, we have recently developed a zebrafish model of fetal hyperglycemia. Zebrafish offers several advantages to complete this project. From a biological point of view, zebrafish embryos have the unique feature of being a ?closed system? i.e for the first 5 days of development, the embryo solely relies on the yolk sac reserved deposited by the mother during ovulation and no energy exchange happens with the exterior world prior the end of embryogenesis. Therefore, in zebrafish we can directly expose the embryos to known concentration of glucose. Thus, specific aim 1 will test the hypothesis that fetal hyperglycemia leads to an increase in BMI, fat mass and insulin resistance in adults fed normal diet.
Specific aim 2 will test the hypothesis that embryonic hyperglycemia increases glycolysis while decreasing ?-oxidation in embryos and in adults.
Specific aim 3 will test the hypothesis that fetal hyperglycemia causes hyperlipidemia and non-alcoholic fatty liver disease in adults.
Specific aim 4 will test the hypothesis that embryonic hyperglycemia increases the levels of circulating lipids and causes atherosclerosis later in life. Successful completion of this proposal will lead to a better understanding of the physiological and molecular consequences of fetal hyperglycemia and will help in defining strategic therapeutic interventions to prevent the development of metabolic diseases in adults exposed to glucose during embryogenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM104357-08
Application #
10154054
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Bernal, Federico
Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Mississippi Medical Center
Department
Type
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A et al. (2018) BOLD magnetic resonance imaging in nephrology. Int J Nephrol Renovasc Dis 11:103-112
Bakrania, Bhavisha A; Spradley, Frank T; Satchell, Simon C et al. (2018) Heme oxygenase-1 is a potent inhibitor of placental ischemia-mediated endothelin-1 production in cultured human glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol 314:R427-R432
Chade, Alejandro R; Williams, Maxx L; Guise, Erika et al. (2018) Systemic biopolymer-delivered vascular endothelial growth factor promotes therapeutic angiogenesis in experimental renovascular disease. Kidney Int 93:842-854
Clemmer, John S; Hester, Robert L; Pruett, W Andrew (2018) Simulating a virtual population's sensitivity to salt and uninephrectomy. Interface Focus 8:20160134
Kamimura, Daisuke; Suzuki, Takeki; Hall, Michael E et al. (2018) Diastolic wall strain is associated with incident heart failure in African Americans: Insights from the atherosclerosis risk in communities study. J Cardiol 71:477-483
da Silva, Alexandre A; Freeman, J Nathan; Hall, John E et al. (2018) Control of appetite, blood glucose, and blood pressure during melanocortin-4 receptor activation in normoglycemic and diabetic NPY-deficient mice. Am J Physiol Regul Integr Comp Physiol 314:R533-R539
Cates, Courtney; Rousselle, Thomas; Wang, Jinli et al. (2018) Activated protein C protects against pressure overload-induced hypertrophy through AMPK signaling. Biochem Biophys Res Commun 495:2584-2594
Reckelhoff, Jane F; Alexander, Barbara T (2018) Reproducibility in animal models of hypertension: a difficult problem. Biol Sex Differ 9:53
Taylor, Erin B; Barati, Michelle T; Powell, David W et al. (2018) Plasma Cell Depletion Attenuates Hypertension in an Experimental Model of Autoimmune Disease. Hypertension 71:719-728
Edwards, Kristin S; Ashraf, Sadia; Lomax, Tyler M et al. (2018) Uncoupling protein 3 deficiency impairs myocardial fatty acid oxidation and contractile recovery following ischemia/reperfusion. Basic Res Cardiol 113:47

Showing the most recent 10 out of 254 publications