Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder characterized by a loss of immunological tolerance and the expansion of autoreactive T and B lymphocytes, leading to the production of autoantibodies. The immune system dysfunction in SLE leads to downstream chronic inflammation and high rates of hypertension, renal injury, and cardiovascular disease. Patients with SLE also have alterations in circulating cytokines, including elevated plasma levels of the adipokine leptin. Leptin is produced by white adipose tissue and has a prominent role in regulating appetite and energy expenditure via its actions in the hypothalamus. However, it also plays a key role in the maintenance and development of inflammation, in part through its direct effects on cells of both the innate and adaptive immune systems. The central goal of this project is to examine the contribution of leptin mediated immune system activation on the pathogenesis of hypertension in SLE. To accomplish this goal, a clinically relevant model of SLE, the female NZBWF1 mouse, will be utilized. Similar to patients with SLE, the NZBWF1 mouse exhibits hypertension, renal injury, and elevated circulating leptin levels, in addition to prominent immune system dysfunction. Work in animal models of autoimmunity strongly implicate leptin in the pathogenesis of autoimmune disease, but the contribution of leptin to the prevalent hypertension during SLE, and the mechanism by which this occurs is unknown. Thus, specific aim 1 will test the hypothesis that elevated leptin during SLE promotes hypertension by stimulating the expansion of proinflammatory TH1 and TH17 cells and decreasing TREG cells.
Specific aim 2 will test the hypothesis that elevated leptin during SLE leads to the development of hypertension by promoting B cell survival and the production of autoantibodies. To accomplish these aims, we will administer leptin or block leptin signaling, and test the impact on the development of B and T lymphocyte dysfunction and autoimmune-associated hypertension. Because leptin acts both centrally (central nervous system) and peripherally, we will also examine relative contribution of central and peripheral leptin on immune system function.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM104357-08
Application #
10154566
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Bernal, Federico
Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Mississippi Medical Center
Department
Type
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
Adeosun, Samuel O; Moore, Kyle H; Lang, David M et al. (2018) A Novel Fluorescence-Based Assay for the Measurement of Biliverdin Reductase Activity. React Oxyg Species (Apex) 5:35-45
Yano, Yuichiro; Reis, Jared P; Colangelo, Laura A et al. (2018) Association of Blood Pressure Classification in Young Adults Using the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline With Cardiovascular Events Later in Life. JAMA 320:1774-1782
Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A et al. (2018) BOLD magnetic resonance imaging in nephrology. Int J Nephrol Renovasc Dis 11:103-112
Bakrania, Bhavisha A; Spradley, Frank T; Satchell, Simon C et al. (2018) Heme oxygenase-1 is a potent inhibitor of placental ischemia-mediated endothelin-1 production in cultured human glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol 314:R427-R432
Chade, Alejandro R; Williams, Maxx L; Guise, Erika et al. (2018) Systemic biopolymer-delivered vascular endothelial growth factor promotes therapeutic angiogenesis in experimental renovascular disease. Kidney Int 93:842-854
Clemmer, John S; Hester, Robert L; Pruett, W Andrew (2018) Simulating a virtual population's sensitivity to salt and uninephrectomy. Interface Focus 8:20160134
Kamimura, Daisuke; Suzuki, Takeki; Hall, Michael E et al. (2018) Diastolic wall strain is associated with incident heart failure in African Americans: Insights from the atherosclerosis risk in communities study. J Cardiol 71:477-483
da Silva, Alexandre A; Freeman, J Nathan; Hall, John E et al. (2018) Control of appetite, blood glucose, and blood pressure during melanocortin-4 receptor activation in normoglycemic and diabetic NPY-deficient mice. Am J Physiol Regul Integr Comp Physiol 314:R533-R539
Cates, Courtney; Rousselle, Thomas; Wang, Jinli et al. (2018) Activated protein C protects against pressure overload-induced hypertrophy through AMPK signaling. Biochem Biophys Res Commun 495:2584-2594
Reckelhoff, Jane F; Alexander, Barbara T (2018) Reproducibility in animal models of hypertension: a difficult problem. Biol Sex Differ 9:53

Showing the most recent 10 out of 254 publications