The capacity to reverse an inborn error within the context of the human chromosome has long held a certain fascination for workers in the tield of molecular medicine. It is now widely accepted that single-stranded DNA oligonucleotides can direct the genetic exchange of a single base in the DNA and therefore can correct a single base mutation in a disease like Sickle Cell Anemia. This approach is known as gene editing. The mechanism of action and the regulation of gene editing depend on the ability of the ssODN to align in homologous register at the target site in the genome. While this approach has shown significant scientific merit, the frequency with which gene editing takes place falls short of clinical relevance. Herein we propose to develop a combinatorial approach to gene editing utilizing Transcription Activator-like Effector Nucleases (TALENs) to create a specific double stranded (ds) DNA break site near the mutant base in the chromosome. Ds DNA breaks are known to increase gene editing directed by ssODNs by activating auxiliary DNA repair and cell cycle protein that help catalyze base exchange. We have already demonstrated that the combinatorial activity of ssODNs and TALENs in gene editing enhances the frequency of gene editing by testing in a validated, well established model system with both phenotypic and genotypic readouts. In this proposal, we intend to apply combinatorial gene editing to the reversal of a (3S allele in CD34+ cells. We will characterize and optimize reaction parameters including the length of the ssODN, the cleavage site of TALEN and the position of the mismatch within the paired chromosomal DNA complex. Importantly, we will also evaluate the CD34+ cell for genotoxic and/or metabolic impacts of gene editing process itself. The key is to minimize the downstream effects of that activation by using this new combinatorial approach, while increasing the actual frequency of mutation repair.
The aims of this grant are interwoven but also independent and significant information can be gained from the experimental outcomes of each of them. We hope to achieve a working protocol that will advance gene editing toward clinical implementation for Sickle Cell Disease.

Public Health Relevance

We seek to develop a molecular medicine for Sickle Cell Disease based on an approach known as gene editing, a genetic technique that can reverse the SCD mutation within the chromosome. This action should have an impact on the clinical manifestation of the disease since corrected or normal progenitor cells will be generated by this ex vivo approach. If successful, this technique will lead to an increase in the number of healthy ^non SCDI progenitor cells in the body

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
1P20GM109021-01
Application #
8662853
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-04-30
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Alfred I. Du Pont Hosp for Children
Department
Type
DUNS #
City
Wilmington
State
DE
Country
United States
Zip Code
19803
Bialk, Pawel; Wang, Yichen; Banas, Kelly et al. (2018) Functional Gene Knockout of NRF2 Increases Chemosensitivity of Human Lung Cancer A549 Cells In Vitro and in a Xenograft Mouse Model. Mol Ther Oncolytics 11:75-89
Modarai, Shirin R; Man, Dula; Bialk, Pawel et al. (2018) Efficient Delivery and Nuclear Uptake Is Not Sufficient to Detect Gene Editing in CD34+ Cells Directed by a Ribonucleoprotein Complex. Mol Ther Nucleic Acids 11:116-129
Bloh, Kevin M; Bialk, Pawel A; Gopalakrishnapillai, Anilkumar et al. (2017) CRISPR/Cas9-Directed Reassignment of the GATA1 Initiation Codon in K562 Cells to Recapitulate AML in Down Syndrome. Mol Ther Nucleic Acids 7:288-298
Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel et al. (2017) Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides. PLoS One 12:e0169350
Bialk, Pawel; Sansbury, Brett; Rivera-Torres, Natalia et al. (2016) Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides. Sci Rep 6:32681