This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This project is based on the observations that Notch signaling is an important regulator of smooth muscle cell (SMC) differentiation and cell cycle progression, and that gastrointestinal stromal tumors (GIST) share molecular markers with SMC. Human GIST cells express Notch receptors, and their growth is inhibited by gamma secretase inhibitors that block endogenous Notch signaling. Challenges associated with the GIST focus are: limited viral transduction efficiency for signaling studies, and until recently, the availability of only one isolate of GIST cells. Therefore, in the last funding period, we focused mainly on human primary SMC to address basic molecular mechanisms by which Notch signaling regulates SMC differentiation phenotypes. Our findings in normal cells will be applied to the idea that cell differentiation therapies related to GIST may be one mechanism to stop abnormal growth and progression of GIST pathologies. Progress this year uncovered an interesting synergistic interaction between Notch signaling and TGFbeta signaling in the control of SMC differentiation phenotype. Both pathways activate the differentiated phenotype, and together they synergize. We are studying two potential models: first, that Notch increases TGFbeta signaling by regulating the expression of endoglin, a TGFbeta co-receptor, and second, that Notch directly interacts with Smads in SMC, changing Smad-mediated transcription. These interactions are being tested at the molecular level using primary human SMC.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015555-10
Application #
7959658
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2009-03-01
Project End
2010-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
10
Fiscal Year
2009
Total Cost
$188,035
Indirect Cost
Name
Maine Medical Center
Department
Type
DUNS #
071732663
City
Portland
State
ME
Country
United States
Zip Code
04102
Soley, Luna; Falank, Carolyne; Reagan, Michaela R (2017) MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells. Curr Osteoporos Rep 15:162-170
Young, K; Krebs, L T; Tweedie, E et al. (2016) Endoglin is required in Pax3-derived cells for embryonic blood vessel formation. Dev Biol 409:95-105
Ames, Jacquelyn J; Contois, Liangru; Caron, Jennifer M et al. (2016) Identification of an Endogenously Generated Cryptic Collagen Epitope (XL313) That May Selectively Regulate Angiogenesis by an Integrin Yes-associated Protein (YAP) Mechano-transduction Pathway. J Biol Chem 291:2731-50
Contois, Liangru W; Akalu, Abebe; Caron, Jennifer M et al. (2015) Inhibition of tumor-associated ?v?3 integrin regulates the angiogenic switch by enhancing expression of IGFBP-4 leading to reduced melanoma growth and angiogenesis in vivo. Angiogenesis 18:31-46
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E et al. (2013) Altered thermogenesis and impaired bone remodeling in Misty mice. J Bone Miner Res 28:1885-97
Apra, Caroline; Richard, Laurence; Coulpier, Fanny et al. (2012) Cthrc1 is a negative regulator of myelination in Schwann cells. Glia 60:393-403
Contois, Liangru W; Nugent, Desiree P; Caron, Jennifer M et al. (2012) Insulin-like growth factor binding protein-4 differentially inhibits growth factor-induced angiogenesis. J Biol Chem 287:1779-89
Urs, Sumithra; Henderson, Terry; Le, Phuong et al. (2012) Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction. Br J Nutr 108:1025-33
Sathyanarayana, Pradeep; Dev, Arvind; Pradeep, Anamika et al. (2012) Spry1 as a novel regulator of erythropoiesis, EPO/EPOR target, and suppressor of JAK2. Blood 119:5522-31
Motyl, Katherine J; Dick-de-Paula, Ingrid; Maloney, Ann E et al. (2012) Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone 50:490-8

Showing the most recent 10 out of 101 publications