This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. 2-Methoxyestradiol (2-ME2) is a natural product of the estrogen, estradiol. Recent laboratory studies suggest that 2-ME2 is an effective cancer therapy, decreasing growth and causing cancer cell death in multiple types of cancer. Because of these encouraging results in the laboratory, 2-ME2 was given orally (capsule form) in clinical trials involving patients with solid tumors, breast cancer and prostate cancer. One of the consistent objectives in all three studies included measuring 2-ME2 blood levels. Generally, 2-ME2 was noted to be well-tolerated with only limited side effects. However, in the majority of the patients, blood levels of 2-ME2 were low suggesting that the drug was not getting absorbed by the stomach and/or was being quickly destroyed by the liver and, therefore, was not adequately reaching the cancer in amounts to be effective. To address this problem, in our study we have proposed two specific aims.
In specific aim 1, we will design new a formulation (change in the chemical structure) of 2-ME2 which will not be immediately inactivated within the body, and, therefore, will be better able to reach the cancer target.
In specific aim 2, using a cancer mouse animal model system we will examine the blood levels and effectiveness of the new 2-ME2 and we will compare these results to the unaltered 2-ME2. If successful, the results of these studies would most definitively act as a forerunner to design new clinical trials with this new formulation and help identify a new treatment against a wide array of cancers.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015563-10
Application #
7959407
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2009-03-01
Project End
2010-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
10
Fiscal Year
2009
Total Cost
$45,332
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Subramanian, Chitra; Grogan, Patrick T; Opipari, Valerie P et al. (2018) Novel natural withanolides induce apoptosis and inhibit migration of neuroblastoma cells through down regulation of N-myc and suppression of Akt/mTOR/NF-?B activation. Oncotarget 9:14509-14523
Ishiguro, Susumu; Kawabata, Atsushi; Zulbaran-Rojas, Alejandro et al. (2018) Co-treatment with a C1B5 peptide of protein kinase C? and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation. Biochem Biophys Res Commun 495:962-968
He, Chenchen; Duan, Shaofeng; Dong, Liang et al. (2017) Characterization of a novel p110?-specific inhibitor BL140 that overcomes MDV3100-resistance in castration-resistant prostate cancer cells. Prostate 77:1187-1198
White, Peter T; Subramanian, Chitra; Zhu, Qing et al. (2016) Novel HSP90 inhibitors effectively target functions of thyroid cancer stem cell preventing migration and invasion. Surgery 159:142-51
Ishiguro, Susumu; Yoshimura, Kiyoshi; Tsunedomi, Ryouichi et al. (2015) Involvement of angiotensin II type 2 receptor (AT2R) signaling in human pancreatic ductal adenocarcinoma (PDAC): a novel AT2R agonist effectively attenuates growth of PDAC grafts in mice. Cancer Biol Ther 16:307-16
Ohta, Naomi; Ishiguro, Susumu; Kawabata, Atsushi et al. (2015) Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS One 10:e0123756
Li, Benyi; Thrasher, James Brantley; Terranova, Paul (2015) Glycogen synthase kinase-3: a potential preventive target for prostate cancer management. Urol Oncol 33:456-63
Li, Benyi; Sun, Aijing; Jiang, Wencong et al. (2014) PI-3 kinase p110?: a therapeutic target in advanced prostate cancers. Am J Clin Exp Urol 2:188-98
Bibis, Stergios S; Dahlstrom, Kelly; Zhu, Tongtong et al. (2014) Characterization of Leishmania major phosphatidylethanolamine methyltransferases LmjPEM1 and LmjPEM2 and their inhibition by choline analogs. Mol Biochem Parasitol 196:90-9
Subramanian, Chitra; Zhang, Huaping; Gallagher, Robert et al. (2014) Withanolides are potent novel targeted therapeutic agents against adrenocortical carcinomas. World J Surg 38:1343-52

Showing the most recent 10 out of 240 publications