This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The Transgenic Mouse and Knockout Core creates transgenic animals for Brown, affiliated hospital, and re-gional investigators. This facility includes a stand-alone microinjection facility capable of handling both pro-nuclear and blastocyst microinjections. An ES cell facility is attached to the core; its function is to perform gene targeting manipulations with vectors supplied by investigators. The facility also advises investigators on optimal strategies for the construction of vectors. With the exception of vector construction, the core handles all aspects of the production of transgenic animals. The core also advises investigators on follow up breeding regimens and analysis of the transgenic animals.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015578-07
Application #
7381151
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
7
Fiscal Year
2006
Total Cost
$238,864
Indirect Cost
Name
Brown University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Lovasco, Lindsay A; Gustafson, Eric A; Seymour, Kimberly A et al. (2015) TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 33:1267-76
Ribeiro, Jennifer R; Freiman, Richard N (2014) Estrogen signaling crosstalk: Implications for endocrine resistance in ovarian cancer. J Steroid Biochem Mol Biol 143:160-73
Casella, Cinzia; Miller, Daniel H; Lynch, Kerry et al. (2014) Oxysterols synergize with statins by inhibiting SREBP-2 in ovarian cancer cells. Gynecol Oncol 135:333-41
Grive, Kathryn J; Seymour, Kimberly A; Mehta, Rajvi et al. (2014) TAF4b promotes mouse primordial follicle assembly and oocyte survival. Dev Biol 392:42-51
Tomimaru, Yoshito; Xu, Chelsea Q; Nambotin, Sarah B et al. (2013) Loss of exon 4 in a human T-cell factor-4 isoform promotes hepatic tumourigenicity. Liver Int 33:1536-48
Minhas, Hassan M; Pescosolido, Matthew F; Schwede, Matthew et al. (2013) An unbalanced translocation involving loss of 10q26.2 and gain of 11q25 in a pedigree with autism spectrum disorder and cerebellar juvenile pilocytic astrocytoma. Am J Med Genet A 161A:787-91
De Cecco, Marco; Criscione, Steven W; Peckham, Edward J et al. (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247-56
Li, Hua; Jogl, Gerwald (2013) Crystal structure of decaprenylphosphoryl-?- D-ribose 2'-epimerase from Mycobacterium smegmatis. Proteins 81:538-43
Tomimaru, Yoshito; Koga, Hironori; Yano, Hirohisa et al. (2013) Upregulation of T-cell factor-4 isoform-responsive target genes in hepatocellular carcinoma. Liver Int 33:1100-12
Tomimaru, Yoshito; Koga, Hironori; Shin, Tai Ho et al. (2013) The SxxSS motif of T-cell factor-4 isoforms modulates Wnt/?-catenin signal activation in hepatocellular carcinoma cells. Cancer Lett 336:359-69

Showing the most recent 10 out of 152 publications