This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator.
The aim of this proposal is to understand the mechanisms by which developing inhibitory brain circuits are able to adapt to sensory inputs, and to maintain their balance with the developing excitatory circuits. During early brain development, neurons in the cerebral cortex establish connections that are then fine tuned by experience-dependent mechanisms. Although much is now known regarding processes of glutamatergic maturation and activity-dependent modification of glutamatergic synapses for network formation, postnatal development of neocortical GABAergic synapses and their role in activity-dependent modification remains unclear. The proposed research will utilize a combination of electrophysiologic recording and microscopic analyses to examine how developmental changes of inhibitory synapses and interneuron network properties are translated into a mature, functional cortical system. This research will provide new information about mechanisms of cortical development and experience-dependant plasticity. It will help us gain further insights into mechanisms underlying several developmental related neurological disorders such as cortical dysplasia, schizophrenia, epilepsy and dyslexia, in which early endogenous and exogenous unfavorable conditions create long-lasting impacts on the mature cortex.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR015640-10
Application #
8167716
Study Section
Special Emphasis Panel (ZRR1-RI-8 (01))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
10
Fiscal Year
2010
Total Cost
$112,352
Indirect Cost
Name
University of Wyoming
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
069690956
City
Laramie
State
WY
Country
United States
Zip Code
82071
Lu, Zhen; Marks, Eileen; Chen, Jianfang et al. (2014) Altered selenium status in Huntington's disease: neuroprotection by selenite in the N171-82Q mouse model. Neurobiol Dis 71:34-42
Smith, A W; Asa, C S; Edwards, B S et al. (2012) Predominant suppression of follicle-stimulating hormone ?-immunoreactivity after long-term treatment of intact and castrate adult male rats with the gonadotrophin-releasing hormone agonist deslorelin. J Neuroendocrinol 24:737-47
Dong, F; Skinner, D C; Wu, T John et al. (2011) The heart: a novel gonadotrophin-releasing hormone target. J Neuroendocrinol 23:456-63
Fox, Jonathan H; Connor, Teal; Stiles, Megan et al. (2011) Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J Biol Chem 286:18320-30
Green, Jade; Tyrrell, Zachary; Radosz, Maciej et al. (2011) Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects. J Phys Chem C Nanomater Interfaces 115:9465-9470
Flynn, Francis W; Jensen, Dane D; Thakar, Amit et al. (2011) Neurokinin 3 receptor forms a complex with acetylated histone H3 and H4 in hypothalamic neurons following hyperosmotic challenge. Am J Physiol Regul Integr Comp Physiol 301:R822-31
Sladek, C D; Stevens, W; Levinson, S R et al. (2011) Characterization of nuclear neurokinin 3 receptor expression in rat brain. Neuroscience 196:35-48
Taylor, W Andrew; Evans, Neil P; Hertz, Carole et al. (2011) Intra-pituitary administration revisited: development of a novel in vivo approach to investigate the ovine hypophysis. J Neurosci Methods 199:175-82
Ceylan-Isik, Asli F; Zhao, Peng; Zhang, Bingfang et al. (2010) Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J Mol Cell Cardiol 48:367-78
Hubbard, Catherine S; Dolence, E Kurt; Rose, James D (2010) Brainstem reticulospinal neurons are targets for corticotropin-releasing factor-Induced locomotion in roughskin newts. Horm Behav 57:237-46

Showing the most recent 10 out of 84 publications