The elucidation of molecular markers for class prediction and class discovery of disease states is an important area of medical research. Our goal is to develop arrays of protein markers for cancer diagnosis and prognosis using proteomics. Two-dimensional gel electrophoresis, mass spectrometry, and direct database searching programs have been combined to provide an enabling technology for proteomics. This initial enabling technology has allowed the full potential of proteomics to be envisioned, but limitations of the current analytical technologies used for the comprehensive analyses of proteins are hampering progress . The strength of the proteomic schemes for comprehensive analyses of cellular proteins is that no assumptions are made, making it possible to observe unanticipated interactions. Furthermore, such comprehensive methods provide a means to address the complexity of biological systems that is caused by the presence of many interdependent parallel signaling pathways. The objectives of this project are to: 1) over come these analytical limitations by developing an integrated analytical system capable of high throughput and high sensitivity protein analysis using mass spectrometry, and 2) apply these methods directly to model cell lines for the elucidation of cancer markers. The microfluidic sample handling and preparation device developed in this proposal will link multi-dimensional column separations with protein identification by mass spectrometry. This system will provide an attractive alternative to two-dimensional gel electrophoresis and in-gel digests. This system will allow the use of multi-dimensional column separations, which will greatly enhance the peak capacity of the protein separation making it possible to observe low abundance proteins in the presence of structural and housekeeping proteins. Furthermore, this system will reduce sample loss and contamination while decreasing the overall analysis time. Yeast cell lysates will be used to evaluate the performance of this system to detect low abundance proteins. Yeast were used to evaluate the current two-dimensional electrophoresis technology and will provide the most reliable comparison with this technique. For the elucidation of cancer markers we will begin with a well characterized system by comparing gene induction products of Src transform and non-transform mouse fibroblast cell lines. For further investigations we will analyze P13 kinase transformed cells and PI 3-kinase induced tumors from chick embryos for inducible protein expression. We anticipate that through the detection of low abundance proteins, we will be able to develop an array of protein markers that play an integral role in the mechanisms of cancer onset. Additionally, it is expected that in our search for regulatory markers we will gain new insights into the mechanisms of cell function and control.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
1P20RR016440-01
Application #
6553283
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2001-09-14
Project End
2006-08-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2001
Total Cost
Indirect Cost
Name
West Virginia University
Department
Type
DUNS #
191510239
City
Morgantown
State
WV
Country
United States
Zip Code
26506
Nichols, Cody E; Shepherd, Danielle L; Hathaway, Quincy A et al. (2018) Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology 12:32-48
Shumar, Stephanie A; Kerr, Evan W; Geldenhuys, Werner J et al. (2018) Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform. J Biol Chem 293:4134-4148
Bedenbaugh, M N; O'Connell, R C; Lopez, J A et al. (2018) Kisspeptin, gonadotrophin-releasing hormone and oestrogen receptor ? colocalise with neuronal nitric oxide synthase neurones in prepubertal female sheep. J Neuroendocrinol 30:
Rodgers, H M; Huffman, V J; Voronina, V A et al. (2018) The role of the Rx homeobox gene in retinal progenitor proliferation and cell fate specification. Mech Dev 151:18-29
Brooks, Celine; Snoberger, Aaron; Belcastro, Marycharmain et al. (2018) Archaeal Unfoldase Counteracts Protein Misfolding Retinopathy in Mice. J Neurosci 38:7248-7254
Grisez, Brian T; Ray, Justin J; Bostian, Phillip A et al. (2018) Highly metastatic K7M2 cell line: A novel murine model capable of in vivo imaging via luciferase vector transfection. J Orthop Res :
Deng, Wentao; McLaughlin, Sarah L; Klinke, David J (2017) Quantifying spontaneous metastasis in a syngeneic mouse melanoma model using real time PCR. Analyst 142:2945-2953
Alway, Stephen E; McCrory, Jean L; Kearcher, Kalen et al. (2017) Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women. J Gerontol A Biol Sci Med Sci 72:1595-1606
Alway, Stephen E; Mohamed, Junaith S; Myers, Matthew J (2017) Mitochondria Initiate and Regulate Sarcopenia. Exerc Sport Sci Rev 45:58-69
Haramizu, Satoshi; Asano, Shinichi; Butler, David C et al. (2017) Dietary resveratrol confers apoptotic resistance to oxidative stress in myoblasts. J Nutr Biochem 50:103-115

Showing the most recent 10 out of 306 publications