Plasmids play a central role in the spread of resistance among bacterial species thereby decreasing the effectiveness of various chemotherapeutic agents for the treatment of infectious diseases. They carry genes that encode essential functions, such as replication, maintenance and transfer, as well as a variety of accessory functions, such as antibiotic resistance determinants. The objective of the proposed research is to obtain a more systematic and comprehensive understanding of plasmid evolution through experimental evolution studies.
The specific aims are 1) To assess the tempo and mechanisms of plasmid evolution during vertical transmission in a single host as compared to vertical and horizontal transmission among phylogenetically distinct hosts, in the presence of selective pressure; 2) To characterize and compare the genetic and phenotypic changes that occur during such experimental plasmid evolution; 3) To test the ability of various algorithms to accurately reconstruct the true phylogenies of independently evolved plasmids and specific genes. The broad host range Inc-1beta plasmid pB10, which encodes resistance to four antibiotics and mercury, will be experimentally evolved in replicate cultures of three genetically distinct hosts (Escherichia coli, Pseudomonas aeruginosa, Burkholderia cepacia) as previously described in studies of microbial evolution. Plasmid evolution in one single host will be compared with evolution in alternating hosts, and in each case plasmids evolved for differing periods of time will be characterized. Phenotypic changes will be characterized by examining the effect of the evolved plasmid on host fitness and by assessing differences in the stability and broad host range characteristics of the evolved and ancestral plasmids. Genetic changes that may account for the observed phenotypic differences will be identified by characterizing macroscale and microscale variations in the evolved replicons. Possible correlations between phenotypic changes and genotypic variations will be examined. In addition an experimental plasmid phlogeny will be constructed that has the same topology as described in Project 1 (Experimental Evolution of Viruses), and which will permit us to test the ability of currently available algorithms and those developed in Project 4 to accurately reconstruct the phylogeny of a BHR plasmid that evolves in more than one genetic background.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
1P20RR016448-01
Application #
6573986
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2002-02-23
Project End
2007-01-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Idaho
Department
Type
DUNS #
City
Moscow
State
ID
Country
United States
Zip Code
83844
Ruffley, Megan; Smith, Megan L; Espíndola, Anahí et al. (2018) Combining allele frequency and tree-based approaches improves phylogeographic inference from natural history collections. Mol Ecol 27:1012-1024
Chernikova, Diana A; Madan, Juliette C; Housman, Molly L et al. (2018) The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr Res 84:71-79
Smith, Stephanie A; Benardini 3rd, James N; Anderl, David et al. (2017) Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions. Astrobiology 17:253-265
Marx, Hannah E; Dentant, Cédric; Renaud, Julien et al. (2017) Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J Biogeogr 44:2618-2630
Yano, Hirokazu; Wegrzyn, Katarznya; Loftie-Eaton, Wesley et al. (2016) Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol 101:743-56
Sarver, Brice A J; Demboski, John R; Good, Jeffrey M et al. (2016) Comparative Phylogenomic Assessment of Mitochondrial Introgression among Several Species of Chipmunks (TAMIAS). Genome Biol Evol :
Stockmann, Chris; Ampofo, Krow; Pavia, Andrew T et al. (2016) Clinical and Epidemiological Evidence of the Red Queen Hypothesis in Pneumococcal Serotype Dynamics. Clin Infect Dis 63:619-626
Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen et al. (2016) Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. Mol Biol Evol 33:885-97
Uribe-Convers, Simon; Settles, Matthew L; Tank, David C (2016) A Phylogenomic Approach Based on PCR Target Enrichment and High Throughput Sequencing: Resolving the Diversity within the South American Species of Bartsia L. (Orobanchaceae). PLoS One 11:e0148203
Chernikova, Diana A; Koestler, Devin C; Hoen, Anne Gatewood et al. (2016) Fetal exposures and perinatal influences on the stool microbiota of premature infants. J Matern Fetal Neonatal Med 29:99-105

Showing the most recent 10 out of 196 publications