Our ultimate objective is to predict, detect, and explain microbial adaptation, viewed as a evolutionary phenomenon, since evolution as a major factor in the emergence and spread of disease as well as in the large scale effectiveness of many treatments. This project will move towards this objective by meeting the following specific aims: 1) Develop new algorithms for aligning multiple sequences and inferring phylogenies, detecting recombinations, and aligning sequences; 3) Apply mathematical models of spatial organismal interaction and sequence loci interactions to evolutionary data from controlled experiments. Our new algorithms include: an iterative approach to discovering subtle similarities in subsequences with which to guide the full alignment; and a genetic algorithms to guide a progressive dynamic programming alignment. The phylogenetic inferencing algorithms using genetic algorithms to search the vast space of possible trees more efficiently. We evaluate representative current algorithms. as well as our own, using data from experimental evolution in other projects, and powerful statistical techniques for modeling recombination events. For the first time, we apply mathematical tools to spatial constraints in viral evolution, and we use mathematical tools from the theory of evolutionary computation to investigate the emergence. of correlated motifs in protein evolution and in abstract evolutionary processes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
1P20RR016448-01
Application #
6574022
Study Section
Special Emphasis Panel (ZRR1)
Project Start
2002-02-23
Project End
2007-01-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Idaho
Department
Type
DUNS #
City
Moscow
State
ID
Country
United States
Zip Code
83844
Ruffley, Megan; Smith, Megan L; Espíndola, Anahí et al. (2018) Combining allele frequency and tree-based approaches improves phylogeographic inference from natural history collections. Mol Ecol 27:1012-1024
Chernikova, Diana A; Madan, Juliette C; Housman, Molly L et al. (2018) The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr Res 84:71-79
Smith, Stephanie A; Benardini 3rd, James N; Anderl, David et al. (2017) Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions. Astrobiology 17:253-265
Marx, Hannah E; Dentant, Cédric; Renaud, Julien et al. (2017) Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J Biogeogr 44:2618-2630
Yano, Hirokazu; Wegrzyn, Katarznya; Loftie-Eaton, Wesley et al. (2016) Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol 101:743-56
Sarver, Brice A J; Demboski, John R; Good, Jeffrey M et al. (2016) Comparative Phylogenomic Assessment of Mitochondrial Introgression among Several Species of Chipmunks (TAMIAS). Genome Biol Evol :
Stockmann, Chris; Ampofo, Krow; Pavia, Andrew T et al. (2016) Clinical and Epidemiological Evidence of the Red Queen Hypothesis in Pneumococcal Serotype Dynamics. Clin Infect Dis 63:619-626
Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen et al. (2016) Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. Mol Biol Evol 33:885-97
Uribe-Convers, Simon; Settles, Matthew L; Tank, David C (2016) A Phylogenomic Approach Based on PCR Target Enrichment and High Throughput Sequencing: Resolving the Diversity within the South American Species of Bartsia L. (Orobanchaceae). PLoS One 11:e0148203
Chernikova, Diana A; Koestler, Devin C; Hoen, Anne Gatewood et al. (2016) Fetal exposures and perinatal influences on the stool microbiota of premature infants. J Matern Fetal Neonatal Med 29:99-105

Showing the most recent 10 out of 196 publications