Microbes evolve on a time scale that is rapid compared to the human life span. Major challenges to human health arise when evolution of drug resistance, vaccine escape, or new diseases surpass our ability to keep up through medical technology. A better understanding of the forces that cause and limit these events is required to anticipate or avoid problems caused by microbial evolution. Fundamenal research done in the Center for Research on Processes in Evolution at the University of Idaho investigates the importance and consequences of critical mutagenic processes, identifies patterns of change that emerge during the course of evolution, develops and tests models to understand these patterns, and devises means to analyze large genetic data sets. Hallmarks of the Center's multidisciplinary research program are the coupling of empirical and theoretical research, a strong orientation toward rigorous testing of hypotheses, and the blending of expertise from biology, biochemistry, mathematics, statistics, and computer science to create productive interdisciplinary teams of investigators. The Center is organized and administered to address the following specific aims: (1) Conduct leading-edge multidisciplinary research in computational and evolutionary biology;(2) Broaden the base of biomedical research in evolutionary biology at the University of Idaho. (3) Mentor COBRE investigators to develop nationally competitive, independently-funded research programs;and (4) Transition to a self-sustaining Center that is independent of funding from the NIH-IDeA Program. Relevance to public health: The rapid evolution of microorganisms contributes to some of the most alarming projected crises for human health, including the emergence of new pandemics and widespread drug resistance. Traditional approaches to microbial evolution focus on the molecular details specific to particular pathogens or on theoretical models that ignore the molecular details. The Center for Research on Processes in Evolution at the University of Idaho takes a broad interdisciplinary approach that incorporates molecular details, population structure and dynamics, and an appreciation for the ecology of the human microbiome. This integrated view of microbial evolution is the next necessary step to move the field toward a more useful predictive science.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016448-07
Application #
7622641
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
Gorospe, Rafael
Project Start
2002-02-23
Project End
2013-01-31
Budget Start
2009-02-01
Budget End
2010-01-31
Support Year
7
Fiscal Year
2009
Total Cost
$1,882,717
Indirect Cost
Name
University of Idaho
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
075746271
City
Moscow
State
ID
Country
United States
Zip Code
83844
Ruffley, Megan; Smith, Megan L; Espíndola, Anahí et al. (2018) Combining allele frequency and tree-based approaches improves phylogeographic inference from natural history collections. Mol Ecol 27:1012-1024
Chernikova, Diana A; Madan, Juliette C; Housman, Molly L et al. (2018) The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr Res 84:71-79
Smith, Stephanie A; Benardini 3rd, James N; Anderl, David et al. (2017) Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions. Astrobiology 17:253-265
Marx, Hannah E; Dentant, Cédric; Renaud, Julien et al. (2017) Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J Biogeogr 44:2618-2630
Yano, Hirokazu; Wegrzyn, Katarznya; Loftie-Eaton, Wesley et al. (2016) Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol 101:743-56
Sarver, Brice A J; Demboski, John R; Good, Jeffrey M et al. (2016) Comparative Phylogenomic Assessment of Mitochondrial Introgression among Several Species of Chipmunks (TAMIAS). Genome Biol Evol :
Stockmann, Chris; Ampofo, Krow; Pavia, Andrew T et al. (2016) Clinical and Epidemiological Evidence of the Red Queen Hypothesis in Pneumococcal Serotype Dynamics. Clin Infect Dis 63:619-626
Loftie-Eaton, Wesley; Yano, Hirokazu; Burleigh, Stephen et al. (2016) Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. Mol Biol Evol 33:885-97
Uribe-Convers, Simon; Settles, Matthew L; Tank, David C (2016) A Phylogenomic Approach Based on PCR Target Enrichment and High Throughput Sequencing: Resolving the Diversity within the South American Species of Bartsia L. (Orobanchaceae). PLoS One 11:e0148203
Chernikova, Diana A; Koestler, Devin C; Hoen, Anne Gatewood et al. (2016) Fetal exposures and perinatal influences on the stool microbiota of premature infants. J Matern Fetal Neonatal Med 29:99-105

Showing the most recent 10 out of 196 publications