This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The objective of the research in my laboratory is to dissect the cellular activities of NR4A NRs in the genetic model organism C. elegans. The cellular activities of NR4A, including mechanisms of transcriptional regulation and interactions with signal transduction pathways, are poorly understood. We have identified an organogenesis function for the C. elegans NR4A ortholog, NHR-6, in C. elegans. The INBRE funded project in my laboratory has two primary objectives: test the hypothesis that NHR-6 functions as an organ specific regulator of cell cycle progression and cell differentiation;and 2) to identify the cellular mechanisms of NHR-6 activity. Data from this work will provide key insight into the functions of this group of physiologically and developmentally important proteins with emerging human health relevance. This past year we pursued two specific aims. The first was to further characterize the genetic interactions between NHR-6 and Eph receptor signaling and to test the hypothesis that NHR-6 and Eph receptor signaling function in a common pathway.
The second aim was to determine if NHR-6 functions through a DNA-binding mechanism. Significant progress has been made on the first aim. We have generated data that suggest NHR-6 and Eph receptor function in a late step in spermatheca development. We also have genetic evidence indicating that NHR-6 and Eph receptor signaling function in a common pathway. For the second aim, we have demonstrated using genetic rescue assays that the NHR-6 DNA-binding domain is necessary for its in vivo function and we are currently pursuing experiments to identify downstream target genes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR016456-09
Application #
8168131
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2010-07-15
Project End
2011-04-30
Budget Start
2010-07-15
Budget End
2011-04-30
Support Year
9
Fiscal Year
2010
Total Cost
$109,837
Indirect Cost
Name
Louisiana State University A&M Col Baton Rouge
Department
Pathology
Type
Schools of Veterinary Medicine
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Hosain, Salman B; Khiste, Sachin K; Uddin, Mohammad B et al. (2016) Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells. Oncotarget 7:60575-60592
Pogue, A I; Dua, P; Hill, J M et al. (2015) Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem 152:206-9
Zhang, Cheng; Rissman, Robert A; Feng, June (2015) Characterization of ATP alternations in an Alzheimer's disease transgenic mouse model. J Alzheimers Dis 44:375-8
Gu, Ying; Barzegar, Mansoureh; Chen, Xin et al. (2015) Fusarochromanone-induced reactive oxygen species results in activation of JNK cascade and cell death by inhibiting protein phosphatases 2A and 5. Oncotarget 6:42322-33
Pasluosta, Cristian F; Chiu, Alan W L (2015) Modulation of grasping force in prosthetic hands using neural network-based predictive control. Methods Mol Biol 1260:179-94
Ibrahim, Sulaimon; Chowriappa, Pradeep; Dua, Sumeet et al. (2015) Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Comput 53:1345-60
Babu, Sainath; Uppu, Sannihith N; Martin, Brittany et al. (2015) Unusually high levels of bisphenol A (BPA) in thermal paper cash register receipts (CRs): development and application of a robust LC-UV method to quantify BPA in CRs. Toxicol Mech Methods 25:410-6
El-Saadi, Madison Wynne; Williams-Hart, Tara; Salvatore, Brian A et al. (2015) Use of in-silico assays to characterize the ADMET profile and identify potential therapeutic targets of fusarochromanone, a novel anti-cancer agent. In Silico Pharmacol 3:6
Gu, Ying; Chen, Xin; Shang, Chaowei et al. (2014) Fusarochromanone induces G1 cell cycle arrest and apoptosis in COS7 and HEK293 cells. PLoS One 9:e112641
Patwardhan, Gauri A; Hosain, Salman B; Liu, David X et al. (2014) Ceramide modulates pre-mRNA splicing to restore the expression of wild-type tumor suppressor p53 in deletion-mutant cancer cells. Biochim Biophys Acta 1841:1571-80

Showing the most recent 10 out of 179 publications