This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Human lipoxygenases (LOX) play pivotal roles in the biosynthesis of leukotrienes and other biologically active eicosanoids. Specific inhibitors that can modulate the physiological and pathological effects of these potent signaling compounds are of high interest. Currently, there are no animal LOX structures that provide a model for how the substrate binds in the LOX active site, a model critical for the development of specific inhibitors. The overall goal of the investigations is to develop substrate-LOX models that can be used for the development of specific anti-LOX inhibitors. Specifically, we will: 1) model protein-substrate interactions in 8R-lipoxygenase. There is no crystal structure of a lipoxygenase in complex with its substrate arachidonic acid (AA) to reveal the structural basis for product specificity in this family of enzymes. The recent 1.85 ? resolution structure of 8R-LOX provides a strong foundation for model enzyme-substrate interactions. 2) """"""""Test"""""""" the generally applicability of this model to lipoxygenases of different product specificity. The results of our research will help understand the mechanism of substrate recognition in lipoxygenases and facilitate drug design to target lipoxigenases. We have used computational methods to find the candidate docking pockets in 8R-LOX for the substrate, arachidonic acid (AA). Analysis of various docking confirmations of AA is in process to identify the biding site. Further work will include identifying the active site of 8R-LOX for substrate AA and generating a model of how AA binds or interacts with 8R-LOX.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR016456-09
Application #
8168139
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2010-07-15
Project End
2011-04-30
Budget Start
2010-07-15
Budget End
2011-04-30
Support Year
9
Fiscal Year
2010
Total Cost
$55,546
Indirect Cost
Name
Louisiana State University A&M Col Baton Rouge
Department
Pathology
Type
Schools of Veterinary Medicine
DUNS #
075050765
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803
Hosain, Salman B; Khiste, Sachin K; Uddin, Mohammad B et al. (2016) Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells. Oncotarget 7:60575-60592
Pogue, A I; Dua, P; Hill, J M et al. (2015) Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem 152:206-9
Zhang, Cheng; Rissman, Robert A; Feng, June (2015) Characterization of ATP alternations in an Alzheimer's disease transgenic mouse model. J Alzheimers Dis 44:375-8
Gu, Ying; Barzegar, Mansoureh; Chen, Xin et al. (2015) Fusarochromanone-induced reactive oxygen species results in activation of JNK cascade and cell death by inhibiting protein phosphatases 2A and 5. Oncotarget 6:42322-33
Pasluosta, Cristian F; Chiu, Alan W L (2015) Modulation of grasping force in prosthetic hands using neural network-based predictive control. Methods Mol Biol 1260:179-94
Ibrahim, Sulaimon; Chowriappa, Pradeep; Dua, Sumeet et al. (2015) Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Comput 53:1345-60
Babu, Sainath; Uppu, Sannihith N; Martin, Brittany et al. (2015) Unusually high levels of bisphenol A (BPA) in thermal paper cash register receipts (CRs): development and application of a robust LC-UV method to quantify BPA in CRs. Toxicol Mech Methods 25:410-6
El-Saadi, Madison Wynne; Williams-Hart, Tara; Salvatore, Brian A et al. (2015) Use of in-silico assays to characterize the ADMET profile and identify potential therapeutic targets of fusarochromanone, a novel anti-cancer agent. In Silico Pharmacol 3:6
Gu, Ying; Chen, Xin; Shang, Chaowei et al. (2014) Fusarochromanone induces G1 cell cycle arrest and apoptosis in COS7 and HEK293 cells. PLoS One 9:e112641
Patwardhan, Gauri A; Hosain, Salman B; Liu, David X et al. (2014) Ceramide modulates pre-mRNA splicing to restore the expression of wild-type tumor suppressor p53 in deletion-mutant cancer cells. Biochim Biophys Acta 1841:1571-80

Showing the most recent 10 out of 179 publications