This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Diabetic chronic foot ulceration represents a major medical, social, and economic problem. It is the leading cause of lower extremity amputations. Key features of the non-healing ulcer in diabetic patients are persistent inflammation and impaired blood vessel regeneration (angiogenesis). Angiogenesis is a complex physiological process that requires normal functions and properly orchestrated interaction between macrophages and endothelial cells (ECs). In diabetic chronic ulcer, those cellular activities and functions are impaired. The biochemical and cellular mechanisms underlying their dysfunction and the possible altered macrophage-endothelial (macrophage-EC) cell interactions in impaired angiogenesis are poorly understood, primarily due to the lack of an in vitro wound-healing angiogenesis model. Consequently, the lack of knowledge of the mechanisms responsible for the pathologies of chronic wound healing such as diabetic ulcer hampers the efforts to develop new therapies and the corresponding molecular targets for intervention. Macrophages play critical roles in wound angiogenesis by secreting multiple cytokines and growth factors including hypoxia inducible factor 1 alpha (HIF-1a). HIF-1a is essential for initiating angiogenesis by inducing the expression of multiple angiogenic factors including VEGF, Flk 1, and NOS. We hypothesize that HIF-1 is a critical regulator of the response of macrophages in diabetic ulceration and for angiogenesis in diabetic wound healing. In order to test our hypothesis, our objective for this summer project is to develop a macrophage-EC co-culture system as an in vitro dermal wound angiogenesis model.
Specific Aim 1 : Develop and characterize a macrophage-EC co-culture system. We will use a Transwell system to establish a macrophage-EC co-culture by growing dermal endothelial cells on the permeable support of the upper chamber and macrophages in the bottom well of the same Transwell system. In such system, there is no direct contact between macrophages and ECs, but their communications are facilitated by growth factors or cytokines secreted by those cells ?mimicking the in vivo environment where there is no direct contact between these two cell types. We will evaluate the effect of cell co-culture on cell proliferation and cytokine expression (including HIF-1a and VEGF).
Specific Aim 2 : Evaluate the feasibility of using the macrophage-EC co-culture system as an in vitro dermal angiogenesis model. We will challenge this co-culture system by inducing an inflammatory as well as a hypoxic state to mimic the wound microenvironment. We will evaluate the cell activities (proliferation, survival) and cytokine expression (HIF-1a and VEGF) under these conditions. The INBRE summer program will enable a productive collaboration between the applicant and her mentor to allow development of a highly needed in vitro dermal wound angiogenesis model. This dermal wound angiogenesis model will provide a robust system to conduct mechanistic studies such as to investigate the effect of the microenvironment of a diabetic wound on the HIF-1-VEGF signaling pathway between macrophages and endothelial cells. The preliminary data obtained from this research will be used for a grant proposal to NIH as well as to obtain research support from her home institution. UCA is an undergraduate institution and Dr. Wang has engaged eight undergraduate students in her research during past 3 years. Therefore, support through this fellowship mechanism will likely also lead to enhancing research opportunities for undergraduate students.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016460-10
Application #
8359818
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
10
Fiscal Year
2011
Total Cost
$26,402
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Physiology
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Doyle, Erin L; Fillman, Christy L; Reyna, Nathan S et al. (2018) Genome Sequences of Four Cluster P Mycobacteriophages. Genome Announc 6:
McSweeney, Jean C; Hudson, Teresa J; Prince, Latrina et al. (2018) Impact of the INBRE summer student mentored research program on undergraduate students in Arkansas. Adv Physiol Educ 42:123-129
Wolyniak, Michael J; Reyna, Nathan S; Plymale, Ruth et al. (2018) Mass Spectrometry as a Tool to Enhance ""-omics"" Education. J Microbiol Biol Educ 19:
Musa, Aliyu; Ghoraie, Laleh Soltan; Zhang, Shu-Dong et al. (2018) A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 19:506-523
Caviness, Perry; Bauer, Ryan; Tanaka, Keisuke et al. (2018) Ca2+ -induced orientation of tandem collagen binding domains from clostridial collagenase ColG permits two opposing functions of collagen fibril formation and retardation. FEBS J 285:3254-3269
Gao, Bo; Li, Guojun; Liu, Juntao et al. (2017) Identification of driver modules in pan-cancer via coordinating coverage and exclusivity. Oncotarget 8:36115-36126
Rahmatallah, Yasir; Zybailov, Boris; Emmert-Streib, Frank et al. (2017) GSAR: Bioconductor package for Gene Set analysis in R. BMC Bioinformatics 18:61
Tarrant, K J; Dey, S; Kinney, R et al. (2017) Multi-generational genome wide association studies identify chromosomal regions associated with ascites phenotype. Poult Sci 96:1544-1552
Wren, Jonathan D; Dozmorov, Mikhail G; Toby, Inimary et al. (2017) Proceedings of the 2017 MidSouth Computational Biology and Bioinformatics Society (MCBIOS) Conference. BMC Bioinformatics 18:498
Glazko, Galina; Rahmatallah, Yasir; Zybailov, Boris et al. (2017) Extracting the Strongest Signals from Omics Data: Differentially Expressed Pathways and Beyond. Methods Mol Biol 1613:125-159

Showing the most recent 10 out of 234 publications