This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. In response to an acute myocardial infarction, the mammalian heart responds with formation of collagen-laden scar tissue. In contrast, the zebrafish heart will undergo cardiomyocyte (CM) proliferation to repair the damaged or missing portion of the myocardial wall, thereby enabling complete restoration of cardiac function. Why certain organisms are better equipped to regenerate lost and damaged tissue has been the subject of intense studies for over three centuries. Yet to date, we know very little about the genetics that stimulate organ regeneration. It is clear however, that the transformation from a differentiated tissue into highly proliferative and regenerative cells requires dramatic changes in developmental programs. In this proposal I will examine the contributions of microRNAs (miRNAs) as modulators of changes in genetic programs during heart regeneration by focusing on the role of the key processing enzyme, Dicer and two specific miRNAs, miR-21 and miR133. For my studies, I will use the powerful, vertebrate zebrafish as a genetic model system due to its robust capacity for heart regeneration. My goal for this research is to ascertain how tissue-specific miRNAs are regulating cardiac regeneration through the use of inducible transgenic strains that modify miRNA activity. My studies will enhance potential therapies to increase survival and regeneration of adult cardiac muscle following ischemic injury.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016463-11
Application #
8360315
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
11
Fiscal Year
2011
Total Cost
$146,429
Indirect Cost
Name
Mount Desert Island Biological Lab
Department
Type
DUNS #
077470003
City
Salsbury Cove
State
ME
Country
United States
Zip Code
04672
Ariyachet, Chaiyaboot; Beißel, Christian; Li, Xiang et al. (2017) Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 104:499-519
Hahn, Mark E; Karchner, Sibel I; Merson, Rebeka R (2017) Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. Curr Opin Toxicol 2:58-71
Nickerson, Chelsea A; Brown, Alexandra L; Yu, Waylin et al. (2017) Prenatal choline supplementation attenuates MK-801-induced deficits in memory, motor function, and hippocampal plasticity in adult male rats. Neuroscience 361:116-128
Palopoli, Michael F; Tra, Van; Matoin, Kassey et al. (2017) Evolution of host range in the follicle mite Demodex kutzeri. Parasitology 144:594-600
Mangiamele, Lisa A; Gomez, Julia R; Curtis, Nancy J et al. (2017) GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J Comp Neurol 525:252-270
Wirth, Peter; Yu, Waylin; Kimball, Amanda L et al. (2017) New method to induce mild traumatic brain injury in rodents produces differential outcomes in female and male Sprague Dawley rats. J Neurosci Methods 290:133-144
Christie, Andrew E; Roncalli, Vittoria; Cieslak, Matthew C et al. (2017) Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. Gen Comp Endocrinol 243:96-119
Dickinson, Patsy S; Qu, Xuan; Stanhope, Meredith E (2016) Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches. Curr Opin Neurobiol 41:149-157
Dickinson, Patsy S; Calkins, Andrew; Stevens, Jake S (2015) Related neuropeptides use different balances of unitary mechanisms to modulate the cardiac neuromuscular system in the American lobster, Homarus americanus. J Neurophysiol 113:856-70
Palopoli, Michael F; Peden, Colin; Woo, Caitlin et al. (2015) Natural and experimental evolution of sexual conflict within Caenorhabditis nematodes. BMC Evol Biol 15:93

Showing the most recent 10 out of 246 publications