This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Quorum sensing (QS) is a mechanism by which many prokaryotes are able to sense and respond to the environment by modification of gene expression. Responses are population dependent and are elicited through the secretion of an autoinducer molecule (AI) which, in high concentration, diffuses back across the cell membrane and modifies gene expression. Such signal reception is critical for the gene expression changes that are part of the pathogenicity of P. aeruginosa in cystic fibrosis. To determine the role of membrane lipid composition in QS signal transmission and reception, membrane lipid profiles from log phase Pseudomonas aeruginosa strains PAO1 and PAO-JP2, grown under typical laboratory conditions, were extracted, identified and quantitated using GC-MS. Profiles from PAO1 and the AI mutant PAO-JP2 were identical, indicating that the QS mutations did not cause altered membrane composition under normal growing conditions. Fresh cultures of PAO-JP2 were then subjected to a variety of stressful growing conditions (low pH, high salt, antibiotics) until the membrane fractions showed a compositional change indicating that the cells were responding to the environmental stress. Using growing conditions demonstrated to stimulate altered membrane composition, cultures of PAO-JP2 were grown to log phase in both normal and stressful conditions, AI added to the culture, and the resulting modification of gene expression qualtitated by DNA microarray analysi

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016469-06
Application #
7381534
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
6
Fiscal Year
2006
Total Cost
$45,281
Indirect Cost
Name
University of Nebraska Medical Center
Department
Genetics
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Barta, Cody L; Liu, Huizhan; Chen, Lei et al. (2018) RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells. Sci Data 5:180005
Liu, Huizhan; Chen, Lei; Giffen, Kimberlee P et al. (2018) Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front Mol Neurosci 11:356
Wehrkamp, Cody J; Natarajan, Sathish Kumar; Mohr, Ashley M et al. (2018) miR-106b-responsive gene landscape identifies regulation of Kruppel-like factor family. RNA Biol 15:391-403
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J et al. (2018) Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 4:123-139
Azadmanesh, Jahaun; Trickel, Scott R; Weiss, Kevin L et al. (2017) Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals. Acta Crystallogr F Struct Biol Commun 73:235-240
Bouska, A; Zhang, W; Gong, Q et al. (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31:83-91
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Bonham-Carter, Oliver; Thapa, Ishwor; From, Steven et al. (2017) A study of bias and increasing organismal complexity from their post-translational modifications and reaction site interplays. Brief Bioinform 18:69-84
Donze-Reiner, Teresa; Palmer, Nathan A; Scully, Erin D et al. (2017) Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol 17:46
Quispe, Cristian F; Esmael, Ahmed; Sonderman, Olivia et al. (2017) Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 500:103-113

Showing the most recent 10 out of 322 publications