This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The metabolic state of a cell typically affects gene expression through protein-mediated mechanisms of transcriptional or translational control. Yet recent studies have shown that messenger RNAs (mRNAs) can directly sense and respond to specific metabolites through intrinsic domains termed riboswitches. In the presence of metabolites, structural changes in riboswitch domains can result in either transcriptional termination or translational repression. Recently a novel catalytic riboswitch has been discovered that exerts genetic control through self-cleavage of the nascent RNA in response to cellular metabolite concentration. The metabolite-dependent ribozyme resides in the 5'-untranslated region of the glmS mRNA of numerous Gram-positive bacteria and it catalyzes an internal phosphoester transfer reaction that results in cleavage and inactivation of the mRNA. The ribozyme selectively recognizes and is 1000-fold activated by glucosamine-6-phosphate, the metabolic product of the GlmS enzyme, and an important component of bacterial cell walls. We are interested in understanding the molecular basis of ligand recognition and catalysis by the glmS riboswitch. To address this we measured the rate of self-cleavage of the ribozyme/riboswitch in response to a panel of related but distinct ligands, serinol, glucose and glucosamine, to name a few. We have determined that the ribozyme makes important contacts to the amine and phosphate in the natural ligand. We are interested in determining how these two functional groups are interacting with the full-length glmS ribozyme in order to fully understand its role in catalysis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR016469-09
Application #
7960279
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2009-05-01
Project End
2010-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
9
Fiscal Year
2009
Total Cost
$35,280
Indirect Cost
Name
University of Nebraska Medical Center
Department
Genetics
Type
Schools of Medicine
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Barta, Cody L; Liu, Huizhan; Chen, Lei et al. (2018) RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells. Sci Data 5:180005
Liu, Huizhan; Chen, Lei; Giffen, Kimberlee P et al. (2018) Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front Mol Neurosci 11:356
Wehrkamp, Cody J; Natarajan, Sathish Kumar; Mohr, Ashley M et al. (2018) miR-106b-responsive gene landscape identifies regulation of Kruppel-like factor family. RNA Biol 15:391-403
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J et al. (2018) Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 4:123-139
Azadmanesh, Jahaun; Trickel, Scott R; Borgstahl, Gloria E O (2017) Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase. J Struct Biol 199:68-75
Bonham-Carter, Oliver; Thapa, Ishwor; From, Steven et al. (2017) A study of bias and increasing organismal complexity from their post-translational modifications and reaction site interplays. Brief Bioinform 18:69-84
Donze-Reiner, Teresa; Palmer, Nathan A; Scully, Erin D et al. (2017) Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biol 17:46
Quispe, Cristian F; Esmael, Ahmed; Sonderman, Olivia et al. (2017) Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 500:103-113
Gerald, Gary W; Thompson, Moriah M; Levine, Todd D et al. (2017) Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider, Pholcus manueli. Ecol Evol 7:6729-6735
Gong, Qiang; Wang, Chao; Zhang, Weiwei et al. (2017) Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 7:11301

Showing the most recent 10 out of 322 publications