This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Many microorganisms produce low-molecular-weight, iron(III)-specific binding compounds called siderophores to compete for iron during iron-limitation. The siderophores isolated from terrestrial bacteria and fungi and from marine bacteria show promise as biomedical agents and for control of microbial growth. To date, no iron-binding compounds produced by marine fungi have been structurally characterized. The siderophores produced by marine fungi provide an as yet unexplored source of novel bioactive compounds. The proposed project will provide the first examples of marine fungal siderophore structures.
The specific aims of this project are to:1. Screen open-ocean fungal strains for the production of iron-binding compounds under conditions of iron limitation.2. Isolate iron-binding compounds from open-ocean fungal strains. 3. Determine the structure(s) of siderophore(s) produced by open-ocean fungi using amino acid analysis, NMR, and mass spectrometry.Involvement of undergraduate students in research is a vital component of their training and education. The proposed research will be accomplished in collaboration with undergraduate students from Northeastern State University. Students will have the opportunity to learn microbiological techniques, natural product isolation and purification techniques including solid phase extraction and reversed-phase HPLC, and structure characterization methods including amino acid analysis, fatty acid analysis, mass spectrometry, and 1D and 2D NMR.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016478-08
Application #
7725110
Study Section
Special Emphasis Panel (ZRR1-RI-7 (02))
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
8
Fiscal Year
2008
Total Cost
$8,623
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2018) Modeling Transcriptional Rewiring in Neutrophils Through the Course of Treated Juvenile Idiopathic Arthritis. Sci Rep 8:7805
Wetherill, Marianna S; Williams, Mary B; Gray, Karen A (2017) SNAP-Based Incentive Programs at Farmers' Markets: Adaptation Considerations for Temporary Assistance for Needy Families (TANF) Recipients. J Nutr Educ Behav 49:743-751.e1
Hannafon, Bethany N; Trigoso, Yvonne D; Calloway, Cameron L et al. (2016) Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 18:90
Wilson, Kevin R; Cannon-Smith, Desiray J; Burke, Benjamin P et al. (2016) Synthesis and structural studies of two pyridine-armed reinforced cyclen chelators and their transition metal complexes. Polyhedron 114:118-127
Trigoso, Yvonne D; Evans, Russell C; Karsten, William E et al. (2016) Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase. PLoS One 11:e0146525
Khandaker, Morshed; Riahinezhad, Shahram; Sultana, Fariha et al. (2016) Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Int J Nanomedicine 11:585-94
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2016) Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 6:27453
Seong, Jaehoon; Jeong, Woowon; Smith, Nataliya et al. (2015) Hemodynamic effects of long-term morphological changes in the human carotid sinus. J Biomech 48:956-62
Day, Michael W; Jackson, Lydgia A; Akins, Darrin R et al. (2015) Whole-Genome Sequences of the Archetypal K1 Escherichia coli Neonatal Isolate RS218 and Contemporary Neonatal Bacteremia Clinical Isolates SCB11, SCB12, and SCB15. Genome Announc 3:
Hannafon, Bethany N; Carpenter, Karla J; Berry, William L et al. (2015) Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer 14:133

Showing the most recent 10 out of 165 publications