This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Sleep perturbations by ethanol play a key role in the progression of alcoholism, and are predictive of relapse. For some insomniacs, the sedative effects of ethanol are the pathway to bedtime alcohol consumption and eventual abuse. Continued abuse of ethanol leads to long-term changes in neuronal sleep circuitry that last well beyond the cessation of ethanol administration. The overall goal of this project is to determine key molecular events that underlie cellular adaptation of sleep circuitry to alcohol, and to correlate them with functional changes in sleep physiology. The thalamus is an integral participant in the generation of sleep/wake cycles and the brain rhythms that occur during sleep. One of the best understood of these rhythms is the thalamic spindle oscillation associated with Stage II sleep. In alcoholics, spindle waves are diminished and are replaced with less-restful random eye movement (REM) sleep. Understanding the fate of spindle wave sleep is thus a vital question that directly relates to the reinforcement effects of ethanol, since some alcoholics return to drinking in an effort to improve the quality of their sleep. The spindle waves generated by thalamocortical relay cells are the output of a complex network oscillation that is propagated throughout the brain. The engine that allows spindle waves to flow through the brain is a low threshold calcium current mediated by T-type calcium channels. Based on our previous studies thalamic T-type calcium channels appear particularly sensitive to ethanol exposure and the disruption of their function and/or availability may provide a cellular mechanism to explain why the sleep of alcoholics is disrupted. To test this hypothesis, we are examining whether the electrophysiological properties and/or the relative expression of the thalamic T channels are affected in Long-Evans rats undergoing chronic ethanol self-administration.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR016481-06
Application #
7381785
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
6
Fiscal Year
2006
Total Cost
$80,320
Indirect Cost
Name
University of Louisville
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Stenslik, M J; Evans, A; Pomerleau, F et al. (2018) Methodology and effects of repeated intranasal delivery of DNSP-11 in awake Rhesus macaques. J Neurosci Methods 303:30-40
Green, Kimberly A; Becker, Yvonne; Fitzsimons, Helen L et al. (2016) An Epichloƫ festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. Mol Plant Pathol 17:1480-1492
Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H et al. (2016) Transcriptional profile of immediate response to ionizing radiation exposure. Genom Data 7:82-5
Saikkonen, Kari; Young, Carolyn A; Helander, Marjo et al. (2016) Endophytic Epichloƫ species and their grass hosts: from evolution to applications. Plant Mol Biol 90:665-75
Smith, Michael E; Monroe, J David (2016) Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes. Adv Exp Med Biol 877:393-417
Witkowski, Travis A; Grice, Alison N; Stinnett, DeAnna B et al. (2016) UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi. PLoS One 11:e0152013
Hofmann, Emily; Webster, Jonathan; Do, Thuy et al. (2016) Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg Med Chem 24:578-87
Harrison, Benjamin J; Venkat, Gayathri; Lamb, James L et al. (2016) The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity. J Neurosci 36:4259-75
Rau, Kristofer K; Hill, Caitlin E; Harrison, Benjamin J et al. (2016) Cutaneous tissue damage induces long-lasting nociceptive sensitization and regulation of cellular stress- and nerve injury-associated genes in sensory neurons. Exp Neurol 283:413-27
Harrison, Benjamin J; Venkat, Gayathri; Hutson, Thomas et al. (2015) Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model. Genom Data 6:249-52

Showing the most recent 10 out of 244 publications